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Abstract

The modeling of solids is most naturally placed within a Lagrangian
framework because it requires constitutive models which depend on
knowledge of the original material orientations and subsequent defor-
mations. Detailed kinematic information is needed to ensure material
frame indifference which is captured through the deformation gradient
F. Such information can be tracked easily in a Lagrangian code. Un-
fortunately, not all problems can be easily modeled using Lagrangian
concepts due to severe distortions in the underlying motion. Either
a Lagrangian/Eulerian or a pure Eulerian modeling framework must
be introduced. We discuss and contrast several Lagrangian/Eulerian
approaches for keeping track of the details of material kinematics.
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1 Introduction

A Lagrangian framework is ideal for modeling the response of solids to exter-
nal loads because such modeling typically requires constitutive models which
depend on detailed knowledge of the material motion. This relationship
is captured through the deformation gradient F. However, some motions
cannot be described on a Lagrangian grid and Eulerian concepts must be
introduced. Arbitrary Lagrangian-Eulerian (ALE) codes accomplish this by
taking a Lagrangian step followed by an optional remap step.20 The La-
grangian step solves the equations of motion in the frame of reference of the
moving material. The Eulerian or remap step moves the mesh coordinates
back to their original configuration or to some other convenient position de-
termined by the remesh step. Some approaches remap to nearby meshes
using conservative interpolation concepts from hyperbolic equations, and for
this reason, the remap step can be referred to as an advection step. Other
technologies implement a remap step that is more general.

A pure Eulerian framework for solid dynamic modeling is also possible.
The general approach is to write the equations in conservation form, analyze
their relevant mathematical properties and then solve numerically. Equa-
tions for elastic flow in Eulerian form are discussed by Plohr and Sharp.22

This work was subsequently extended to include rate-dependent and rate-
independent plasticity.23 One-dimensional numerical solution techniques for
this type of model were later presented.37 The 20-component equation sys-
tem for rate-dependent metals includes the inverse deformation gradient (9),
momentum (3) and energy conservation (1), plastic strain (6) and a work
hardening equation. (If the assumption of an initial uniform density is re-
laxed then one more equation would be required for a total of 21 variables.)
Application of these equations to shear band modeling has also been pre-
sented.10 One of the difficulties of solid dynamics modeling is that the most
effective and universal modeling framework and associated constitutive forms
have not been completely agreed upon. Careful and thoughtful reasoning
based on physical principles and experimental data is required.21,36 Multi-
dimensional modeling results from this group are relatively recent and are
associated with a front tracking numerical method.34,35 The issue of the use
of stable, properly posed equations for the inverse deformation gradient is
discussed briefly by Walter, et al.35 in relationship to an interface equation
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and in detail by Miller and Colella.18,19

Trangenstein and Collella introduced a general framework for modeling
finite deformation in solids.30 Their paper details many of the difficulties of
modeling finite deformation in solids in an Eulerian framework. Additional
papers by Trangenstein and coauthors have also appeared.29,31,32 More re-
cently, work by Miller and Collella discusses the stability requirements for the
inverse deformation gradient equations in Eulerian form and presents both
elastic and elastic-plastic results.18,19 The model presented is very similar
but involves 24 independent variables because the plastic deformation gra-
dient is solved for in place of the symmetric plastic strain and an additional
mass density equation is used.

Lin and Ballmann develop a conservative Godunov formulation based on
the solution of a Riemann problem for one-dimensional motion of a thin-
walled tube with longitudinal and torsional stress wave propagation.16 The
system maintains longitudinal and circumferential velocities and strains as
independent degrees-of-freedom. A Godunov approach is also followed by
Udaykumar, et. al.33 They solve a two-dimensional conservation law system
for mass, momentum, energy, equivalent plastic strain and deviatoric stress.
This system only keeps advective terms for the deviatoric stress in the con-
servative flux leaving the elastic contributions to be discretized as source
terms.

Fundamentally, solid dynamic modeling must include first, a description
of the kinematics of material motion; and second, an optional set of state
variables which may evolve with the motion and track local material state
properties. Linear elastic or hyperelastic models provide the stress given in-
formation about the current deformation. However, for large elasto-plastic
deformations, the stress in general depends on the history of the deformation.
Hypoelastic models, which relate invariant stress rate measures to deforma-
tion rates, have long been popular despite concerns about the thermodynamic
validity of commonly used simple hypoelastic forms.28 This report touches
on an ALE formulation developed from a hypoelastic model point of view in
terms of the Green-Naghdi rate. All constitutive models are cast in the un-
rotated configuration and the rotation tensor is used to transform the stress
from the unrotated to the current configuration. The fundamental kinematic
variables related to the deformation gradient are evaluated at element cen-

10



ters. This is equivalent to the average value in the element to second order
in the element size. A conservative interpolation method is used to update
element centered average values across a remap step. Thus, we effectively
solve

φt + ∇ · (φvm) = 0

where φ is a scalar value and vm is the effective remesh velocity. In this doc-
ument components of tensors are remapped individually. In the remap oper-
ations, both the kinematic descriptors and state descriptors may be moved
off any constraint surface where they are supposed to lie. For example, the
determinant of a deformation gradient must be positive in order to create a
physically relevant one-to-one mapping between each material point and its
current location. Furthermore, curls of gradients should vanish identically. A
given remapping method may not preserve these properties, and the results
may not be desirable. As another example, it may be difficult to preserve a
stress state that is constrained to lie on a yield surface in the remap step.
Issues associated with remap of material state information are difficult, and
tradeoffs may be necessary.24

Any Eulerian or ALE scheme for tracking the kinematics of solid defor-
mation is bound to eventually break down given enough deformation. Solid
dynamics intrinsically depends on the one-to-one mapping between a ref-
erence set of coordinates and the current coordinates. Because it is always
possible to generate a flow which is distorted enough that this mapping is dif-
ficult or impossible to achieve, some sort of implicit or explicit regularization
or correction is required. Thus, it is essential to determine which techniques
are the most accurate and robust in the face of a variety of difficult material
motions.

In this report we are concerned with understanding issues associated with
the choice of algorithms for modeling the kinematics of solid motion as well as
the consequences of these choices with respect to speed and accuracy. We will
lay the state descriptor issue aside and concentrate on approaches for main-
taining the kinematic information in the form of the deformation gradient or
its inverse. We shall investigate a traditional approach for updating compo-
nents of the polar decomposition, a more compact form based on quaternions
and an approach based on a direct computation of the inverse deformation
gradient. We propose a few simple test problems with exact solutions and
make comparisons of the methods in Lagrangian and ALE frameworks.
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2 Stretch and Rotation Update Method (VR)

We define the Lagrangian motion x(a, t), where x represents the current
coordinates as a function of the initial Lagrangian positions a and time t, and
the corresponding velocity, v = ẋ(a, t) = ∂x/∂t. Vector differential operators
∇, ∇× and ∇· are always with respect to the specified spatial coordinates,
x. Also, w is the axial vector corresponding to the skew-symmetric tensor
W (i.e. Wu = w × u for every vector u). We assume a time step ∆t and
mesh spacing ∆x.

The kinematics of modeling continuum solids is described via a motion,
x(a, t), where x is the current position as a function of the initial Lagrangian
coordinates a and time t. Of particular interest is the deformation gradient
tensor ∂x/∂a which is needed in order to properly compute material stress
states through the constitutive assumptions.

One common approach is to decompose the deformation gradient at the
initial time,

F =
∂x

∂a
= VR (2.1)

into a symmetric positive definite left stretch tensor V and an orthonormal
rotation tensor R. The V and R matrices are then updated separately in
a Lagrangian sense using a rate equation based on the mid-point velocity
gradient tensor L.5,8, 14 That is,

Ln+1/2 = ∇n+1/2vn+1/2 = (∇v)n+1/2 (2.2)

and

Dn+1/2 =
1

2
(Ln+1/2 + LT

n+1/2) (2.3)

Wn+1/2 =
1

2
(Ln+1/2 − LT

n+1/2). (2.4)

An angular velocity (or spin) tensor Ω is calculated from Dn+1/2 and Vn

using
ωn+1/2 = wn+1/2 + [tr(Vn)I − Vn]−1zn+1/2, (2.5)

where zn+1/2, wn+1/2 and ωn+1/2 are the axial vectors corresponding to
the skew-symmetric tensors Zn+1/2 = Dn+1/2Vn − VnDn+1/2, Wn+1/2 and
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Ωn+1/2, respectively. A common first-order in time algorithm for Vn and
Rn,5,8 is

Vn+1 = Vn + ∆t(Ln+1/2Vn − VnΩn+1/2) (2.6)

Rn+1 = [I −
1

2
∆tΩn+1/2]

−1[I +
1

2
∆tΩn+1/2]Rn. (2.7)

Note that the right hand side of Equation 2.7 is an approximation to the
matrix exponential solution

Rn+1 = exp[Ωn+1/2∆t]Rn.

which is exact if Ω is constant. The overall algorithm is first-order accurate
because the derivative is computed using Vn instead of Vn+1/2 in Equation
2.5.

For staggered space-time discretizations, the velocity gradient L is known
only at the mid-point time, but the V and R tensors are known at the time
step. After obtaining Ωn, we can compute an estimate of V at the mid-point
time using

Vn+1/2 = Vn +
1

2
∆t(Ln+1/2Vn − VnΩn) (2.8)

and then use this estimate of Vn+1/2 to compute Ωn+1/2 as in Equation 2.5.

ωn+1/2 = wn+1/2 + [tr(Vn+1/2)I − Vn+1/2]
−1zn+1/2, (2.9)

with Zn+1/2 = Dn+1/2Vn+1/2−Vn+1/2Dn+1/2. The final update then becomes

Vn+1 = Vn + ∆t(Ln+1/2Vn+1/2 − Vn+1/2Ωn+1/2), (2.10)

Rn+1 = [I −
1

2
∆tΩn+1/2]

−1[I +
1

2
∆tΩn+1/2]Rn. (2.11)

Equations 2.8 through 2.10 amount to a mid-point Runge-Kutta integration
and thus lead to a second-order accurate time integration algorithm. Addi-
tional computational cost involves little more than one extra tensor inversion
per cycle. Equation 2.11 is directly derivable from a second order time dis-
cretization of the rotation differential equation Ṙ = ΩR and, as can easily
be shown, provides an orthonormal rotation update.14,27 Both the first-order
accuracy of the original algorithm and the second-order accuracy of the al-
gorithm described in this section have been verified numerically. We refer to
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these algorithms as the Hughes-Winget (HW) algorithms based on the intial
motivation by Thomas Hughes and James Winget.

The principal reason for calculating R is for use in satisfying the principle
of material frame indifference in material models. The Cauchy stress , T, is
required to integrate the equations of motion however what is stored is the
unrotated or reference stress configuration, Σ. They are related by

Σn = RT
nTnRn. (2.12)

For example, a hypo-elastic material model may take the form

dn+1/2 = RT
n+1/2Dn+1/2Rn+1/2 (2.13)

Σn+1 = Σn + ∆tf(dn+1/2,Σn). (2.14)

where we see that the rate-of-strain tensor, Dn+1/2, is rotated into the mate-
rial frame as dn+1/2 for use by the constitutive equations. Rn+1 may also be
used instead of Rn+1/2 but this reduces the overall order of the stress update
equations. Whenever T is needed, it is extracted using

Tn+1 = Rn+1Σn+1R
T
n+1. (2.15)

We point out that Equation 2.11 is only one of several forms for updating
rotation tensors in terms of Ωn+1/2. Various forms of the Euler-Rodrigues
formula or exponential map are possible. The exponential map transforms
skew-symmetric matrices into orthogonal matrices according to the expres-
sion

exp[Ω] =
∞

∑

n=0

1

n!
[Ω]n. (2.16)

Rodrigues is attributed with showing that this has the closed form solution

exp[Ω] = I +
sin(‖ω‖)
‖ω‖

Ω +
1

2

[

sin(‖ω‖
2

)
‖ω‖
2

]2

Ω2. (2.17)

where ω is the axial vector corresponding to Ω. This can then be used to
update Rn using the expression

Rn+1 = exp[∆tΩn+1/2]Rn (2.18)
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This algorithmn has the advantage of being an exact solution for constant
spins, and is second-order accurate.4,27

Lagrangian motion algorithms and associated material models require
one or both of Rn+1/2 (e.g. for stress integration algorithms) and Rn+1 for
rotation to the current frame as in Equation 2.15. Due to the Lie algebra
generated by skew symmetric tensors, very tight and efficient closed form
equations can be obtained for these quantities. Rn+1/2 = Q̂1/2Rn has been
proposed by Trangenstein.30 For the exponential map form, this is equivalent
to

Rn+1/2 = exp[
∆t

2
Ωn+1/2]Rn = exp[−

∆t

2
Ωn+1/2]Rn+1 = Q̂1/2Rn = Q̂−1/2Rn+1

(2.19)
Thus, simple efficient expressions are possible for Rn+1/2 in terms of Ωn+1/2,

Q̂1/2 or Q̂−1/2. Alternatively, if storing the rotations at n and n + 1 is more
desirable than storing the midpoint rotations in some representation, we can
compute the midpoint rotation from Rn+1 and Rn using the following formula
derived from Equation 2.17. Define Rn+1RT

n = exp[Ω]. By taking the trace
of Equation 2.17

cos(‖ω‖) =
Tr(exp[Ω]) − 1

2
(2.20)

which allows the computation of ‖ω‖. In addition using Equation 2.17 we
find that

exp[Ω] − exp[Ω]T =
2 sin(‖ω‖)

‖ω‖
Ω (2.21)

giving Ω which thus allows for the straightforward computation of Rn+1/2 as

Rn+1/2 = exp[Ω/2]Rn. (2.22)

2.1 VR Remap

One approach for accomplishing the remap step is to advect the stretch
and rotation matrices componentwise using a volume-based element remap
algorithm that preserves the integral of the components.20 This means that
9 components are remapped in 2D (4 from the stretch tensor and 5 from
the rotation tensor), and 15 components are remapped in 3D (6 from stretch
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and 9 from rotation). (Note that in 2D we have included the V33 and R33

components as these are advected even if they are equal to one.) Because
the VR update algorithm is local in nature, only materials in the problem
that need to track the rotation tensor do so. In our implementation, the
rotation and stretch are associated only with those materials needing them
for material modeling purposes.

After the componentwise remap operation is completed we have new
stretch and rotation matrices Ṽ and R̃. This algorithm does not violate
the symmetry of V, but it may not preserve the orthonormality of R. For
large deformations, successive remaps may cause the stretch tensor to lose
the property of positive definiteness. A stretch that is sufficiently large or
small will cause numerical round-off issues. Additionally, it is possible that
very large stretch rates may be introduced relative to the chosen time step
and there appears to be no reason why loss of positive definiteness may not
occur directly in the Lagrangian time integration step. These issues repre-
sent fundamental errors relative to the modeling assumption that det(F) > 0
and must be corrected or at least managed in some way.

A negative eigenvalue in the stretch tensor indicates a breakdown in the
kinematic description as a result of finite resolution and remap errors. For
sufficiently large deformations, these errors are inevitable. The errors are
often spatially localized and it may be desirable to minimize the impact of
these errors on the rest of the grid while pushing the computation through
to completion. To do so, it is important to detect when possible fatal errors
are developing and take measures to reduce them.

We propose that the eigenvalues of the stretch tensor be required to lie in
a user selectable interval (λs,λl). The eigenvalues of Ṽ will lie in this range
if Ṽ − λsI and λlI − Ṽ are both positive definite. A useful test for positive
definiteness is to verify that all of the principal determinants of the tensors
are positive.9 If this test fails, we propose a fast spectral decomposition
solver to examine the eigenvalues of the stretch tensor at each time step and
force them to remain positive. The eigenvalue solver used for our work was
provided by Scherzinger.25 Let

ṼQ̃ = Q̃Λ (2.23)

represent an eigenvalue/eigenvector diagonalization of Ṽ and let λs be a
preselected floor value and 1/λs be a the preselected ceiling value. If λ1 ≤
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λ2 ≤ λ3 are the ordered eigenvalues of V, then we modify the elements of Λ
according to

λ̂1 = min(1/λs, max(λ1,λs)) (2.24)

λ̂2 = min(1/λs, max(λ2,λs)) (2.25)

λ̂3 = min(1/λs, max(λ3,λs)) (2.26)

and compute the “corrected” V using

V = Q̃Λ̂Q̃T . (2.27)

Although this correction does not remove the underlying problem associ-
ated with finite grid resolution and remapping, it can lessen the impact on
the rest of the calculation.

Figures 1, 2, and 3 compare stretch tensor eigenvalues for a discontinuous
rotation profile to be described later in our detailed tests. It demonstrates
the eigenvalue reset algorithm with various limits on the eigenvalues. In
Figure 1, the eigenvalues are not reset because they always lie within the
bounds of λs = 10−2 and λl = 102. In Figure 2, a few eigenvalues are limited
to demonstrate the algorithm. In Figure 3, values of limiting eigenvalues are
selected to exaggerate the effect of the algorithm.

After the components of the rotation tensor are remapped, the remapped
rotation tensor R̃ will deviate from the orthonormality property required by
the kinematic theory. The obvious solution to this problem is to project
R into the space of orthonormal tensors at the end of the remap step by
performing performing a polar decomposition as in Equation 2.1 and setting
R to the rotation tensor portion of this decomposition. This essentially
throws away the stretch part or the decomposition which we consider remap
error.

In two dimensions we use an explicit method provided by Brannon.4 This
is

R11 = (R̃11 + R̃22)/a (2.28)

R21 = (R̃21 − R̃12)/a (2.29)

R12 = (R̃12 − R̃21)/a (2.30)

R22 = (R̃11 + R̃22)/a (2.31)

17



Figure 1: Stretch eigenvalues for a rotation problem with a discontinuous
vorticity field. Plotted is the eigenvalue vs. radius from origin with a cut off
of λs = 10−2. The exact solution is plotted as a solid line.
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Figure 2: Stretch eigenvalues for a rotation problem with a discontinuous
vorticity field. Plotted is the eigenvalue vs. radius from origin with a cut off
of λs = 10−1. The exact solution is plotted as a solid line.
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Figure 3: Stretch eigenvalues for a rotation problem with a discontinuous
vorticity field. Plotted is the eigenvalue vs. radius from origin with a cut off
of λs = 4 · 10−1. The exact solution is plotted as a solid line.
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where

a =
√

(R̃11 + R̃22)2 + (R̃21 − R̃12)2 (2.32)

Expanding the terms inside the radical shows that

a =
√

R̃2
11 + R̃2

12 + R̃2
21 + R̃2

22 + 2 det R̃ (2.33)

and since the remapped rotation matrices should be close to proper orthog-
onal rotation matrices over one remap step it is clear that a should not
approach zero and the algorithm should be well defined and robust.

In three dimensions we have used both a direct method provided by
Scherzinger25 and an iterative method provided by Brannon.4 Fast meth-
ods for polar decompositions of non-singular matrices have been studied in
detail.12,13,15 Brannon’s algorithm extracts the rotation part of R̃ via a fixed
point iteration, which converges if the maximumal eigenvalue of R̃ is less than√

3. Since the orthonormal part of a tensor is invariant to scalar multiples,
first rescale R according to

R0 =

√

3

tr(R̃T R̃)
R̃. (2.34)

If λ2
1 ≤ λ2

2 ≤ λ2
3 are the non-zero ordered eigenvalues of (R0)TR0, then by

construction λ2
1 + λ2

2 + λ2
3 = 3 and λ2

3 < 3. Thus, iterating

Rm+1 =
1

2
Rm[3I − (Rm)TRm]. (2.35)

is guaranteed to converge to the nearest orthonormal tensor. The iteration
stops for some M where ||(RM)T (RM) − I||2 < ε2 and ε is an small number
close to machine precision and then R is set to RM . The componentwise
remap generally produces updated rotation tensors, R̃ that are “nearly” or-
thonormal, and the iterative projection method usually converges to machine
precision in just a few iterations to produce an orthonormal R.
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3 Quaternion Representation VR Method (QVR)

A more compact representation for a rotation is available in terms of quate-
rions.1,38 Quaternions form an algebra called a division ring in which the ele-
ments of the algebra are not commutative under multiplication.11 A quater-
nion can be represented as q = (s,v) where s is real and v is a vector. The
quaternion product is given by

q1q2 = (s1,v1)(s2,v2) = (s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2).

The quaternion inverse is q−1 = q̄/(qq̄) with q̄ = (s,−v) and the quaternion
norm is |q| =

√
qq̄.

The space of quaterions with unit magnitude represents rotations through
the correspondence

q = (cos(θ/2), sin(θ/2)u) = exp((0,ωt/2))

where θ = |ωt| is the rotation angle and u = ω/|ω| is unit spin axis. The
products of unit quaterions are also unit quaternions. The mapping to a
rotation tensor is given by

R = (2s2 − 1)I + 2v ⊗ v + 2sv̂ (3.36)

where v̂ represents the skew-symmetric tensor such that v̂h = v × h for all
h, and v ⊗ v = vivj. Thus the rotation in three dimensions can be thought
of as being given by a real 4-vector with unit scaling. In two dimensions
only s and vz are non-zero so the rotation can be represented by a vector of
length two. In both cases we use one more degree of freedom to represent
the rotation than strictly required. One way to think of this is that instead
of storing the rotation angle we are storing the sine and the cosine of the
angle. Thus when it comes time to obtain a rotation matrix only algebraic
operations are required and no-transcendental functions are needed. We are
still far ahead in term of compactness since 9 and 4 storage locations are
required in 3D and 2D respectively in the VR case discussed in the previous
section.

The quaternion rotation differential equation is

q̇ = (0,ω/2)q
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which can be solved exactly for constant axis spin vector ω as an exponential
in the quaternion algebra.

q(t) = exp((0,ω/2)t)q(0) = (cos(|ωt|/2), sin(|ωt|/2)
ω

|ω|
)q(0).

Thus any constant spin rotation update can be computed exactly with two
transcendental function evaluations and some minor algebra. The major
advantage of the quaternion representation of a rotation update is that a
subsequent rotation can be represented simply as a quaternion product as
shown above.

The Lagrangian update algorithm for V is unaffected. The natural La-
grangian rotation update algorithm for the quaternion representation is the
exponential map,

qn+1 = exp(0,ωn+ 1

2

∆t/2)qn = exp(0,α)qn. (3.37)

We term this Lagrangian algorithm the LQVR algorithm.

It may be useful, in a similar manner to the VR algorithm, to generate
the midstep rotation from the values at the end points. Recall that

qn+1 = (cos(|α|), sin(|α|)
α

|α|
)qn (3.38)

In order to compute |α| it is easily seen that

qn+1q−1
n + qn+1q−1

n

2
= sn+1sn + vn+1 · vn = cos(|α|). (3.39)

To compute the rotation at the half step some algebra shows that

exp(0,α/2) = (cos(|α/2|), sin(|α/2|)
α

|α|
) =

1

2 cos(|α/2|)
((1,0) + exp(0,α))

(3.40)
and therefore

qn+1/2 = exp(0,α/2)qn =
1

2 cos(|α/2|)
(qn+1 + qn) (3.41)
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3.1 QVR Remap

In this representation we remap the components of V exactly as in the VR
case. However, the rotation treatment is vastly different. The conservative
remap algorithm is applied to each component of q so that only 2 components
in 2D and 4 components in 3D are remapped. Since the remap routine is a
major computational cost we expect significant savings over the VR case.

In addition, the algorithm for keeping the quaternions representation in
the proper space is much simpler when compared to the complex rotation
tensor projection methodologies outlined in the previous section. The stan-
dard procedure for dealing with floating point roundoff in rotation quaternion
updates is to rescale the quaternion to unit magnitude. In the remap case,
truncation error will enter into the quaternion representation of the remapped
field and we will obtain a qr which does not exactly represent a rotation. We
can however still use the same simple scaling methodology to ensure that the
quaternion does indeed represent a rotation. That is, q = qr/

√
qrq̄r.

We tested this algorithm with and without renormalization, and found
that for particularly severe, discontinuous deformations, renormalization led
to much more accurate results. For smooth problems it made little difference.
Because the renormalization is inexpensive, we have used it in all subsequent
tests.

In Figure 4, we compare the results of two two-dimensional rotation prob-
lems using the RVR and QVR algorithms. The comparison is based on a
percent L2 error norm in R calculated with the equation

√

∑∑

|Rijcalc − Rijexact|
2

∑∑

|Rijexact|
2

(3.42)

Note that all differences here, up to roundoff errors, are due to the differ-
ences between remapping the four-component tensor and the two-component
quaternion and to the differences in renormalization. Time integration does
not play a factor in the differences seen because the RVR and QVR algo-
rithms both use the exponential map instead of the Cayley transformation.
Both test problems show that the QVR representation yields equivalent re-
sults or better. This seems reasonable because in the quaternion case, the
remap step has fewer degrees of freedom.
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Figure 4: Comparison of RVR and QVR representations for R on two 2D
rotational problems. The left figure corresponds to a smooth velocity field
(Exponential Vortex), while the right is a discontinuous velocity field (ABC
Vortical Flow).
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4 Inverse Deformation Gradient Method (IDG)

In a Lagrangian code it is easy to compute the inverse deformation gradient
with respect to a given set of spatial coordinates at any time level. Only
a fast polar decomposition algorithm is required to compute R. We simply
keep track of initial Lagrangian coordinates at the mesh nodes and take a
gradient with respect spatial coordinates whenever the inverse deformation
gradient is needed. For example,

F−1
n+1/2

= Gn+1/2 = ∂a/∂xn+1/2 (4.43)

F−1
n+1 = Gn+1 = ∂a/∂xn+1. (4.44)

The rotation tensor can then be computed by a fast right polar decomposition
algorithm

F−1 = G = RTV−1 (4.45)

to compute R and V at any given time. Robust methods based on eigenvalue
decompositions or iterative methods are available.25,4

We call this method the inverse deformation gradient (IDG) method.
Note that neither the rotation nor the stretch tensor needs to be stored
explicitly. For practical software reasons we have not eliminated storage of
the rotation tensor in our implementation.

4.1 DG Constrained Transport Remap

One might propose that Lagrangian coordinates a be remapped using the
standard node-centered remapping routines found in an ALE framework.
This is simple and for some problems might be very effective. However, it
is apparent from the the classical numerics of ideal magnetohydrodynamics
(MHD) that this will be flawed. What we really care about is not the coordi-
nates themselves but the gradients of these coordinates given by the inverse
deformation gradient. To the extent that preservation of gradient monotonic-
ity through successive remaps steps is important, advection of the coordinates
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themselves is a problem. In MHD, non-preservation of monotonicity results
in highly undesirable and unphysical current reversals. Non-monotonicity of
the inverse deformation gradient may not be as critical for solid dynamic
applications but may still lead to undesirable solution characteristics or nu-
merical breakdown. Fortunately, aspects of this remapping problem have
already been addressed in the MHD community.

The constrained transport (CT) algorithm introduced by Evans and Haw-
ley on structured meshes provides a mechanism for advection of magnetic flux
density, B, which also exactly preserves a discrete ∇ ·B = 0 property.6 The
constrained transport algorithm is applicable to a staggered field representa-
tion where the magnetic flux is represented on cell faces and the electric fields
on cell edges. In the finite element context the appropriate generalization of
the CT staggered magnetic field representation is given by edge and face
finite element bases. These bases form a deRham complex for nodes, edges,
faces and volumes connected by the operators ∇, ∇× and ∇·, respectively
in the sense that the gradient of the nodes yields edges, the curl of the edges
yields faces and the divergence of the faces yields volume. It is then natural
to try to extend the CT algorithms to unstructured meshes since the finite
element formalism of the deRham complex matches precisely the geometry
required for computing high order upwind fluxes in the structured grid CT
algorithm. A solenoidal field B may be generated from a vector potential A
through the relationship

B = ∇× A.

A is naturally represented by edge elements with circulations on edges as
degrees of freedom, and B is given by the solenoidal subspace of face ele-
ments with fluxes on faces. The degrees of freedom of A and B are related
by simple algebraic relations in which the fluxes are represented as sums of
circulations. Londrillo and Del Zanna have noted that the constrained trans-
port algorithm is applicable to advection of vector potentials provided that
the vector potential is properly represented on edges.17 Vector potential for-
mulations have been considered to be deficient representations for advection
of magnetic fields due to errors which accumulate during the remap process.
This is strictly true only if one insists on remapping nodal vector potential
values using some standard reconstruction and limiting procedure for nodal
quantities. If the limiting is carried out in the flux density space, good al-
gorithms can be obtained. If vector potential components are represented
on edges, it is natural to compute edge centered updates in terms of a high
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order magnetic flux representation. In this case there is no essential differ-
ence between a vector potential formulation and a flux centered approach
because the updates in the first case are added to the vector potential while
the curl of the updates is added to the face centered fluxes in the second case.
Constrained transport succeeds because advection is based on reconstruction
and limiting of the underlying field instead of the vector potential. This en-
sures that the gradients of the vector potential have monotonic properties.
Advecting the vector potential directly can be disastrous because underlying
gradients will not be monotonic and current reversals can be introduced.

Returning now to the kinematics of solids, the basic constrained trans-
port ideas for magnetic flux remapping are readily applicable to constrained
transport for Lagrangian positions or associated gradients. Lagrangian coor-
dinates can be considered to be the “potentials” of the inverse deformation
gradient fields. The difference now is that we are trying to stay within a
“curl free” space so we expect to either update potentials on nodes or up-
date circulations on edges as gradients of nodal increments. The idea is to
ensure that the deformation gradient representation always lives in the curl
free subspace of edge elements. We do this by representing each row g of
G as an edge element. The degrees of freedom on each edge are the circu-
lations of the coordinate gradients which are initialized with the point wise
signed difference of the corresponding initial Lagrangian coordinates. During
the Lagrangian step these circulation values must be invariant. During the
remap we define a high order representation of this field by extending the
edge element description to include edge circulation gradients. Given this
new representation, we compute an upwind nodal flux contribution at each
node and then take the gradient to update the edge circulations. This ensures
that the inverse deformation gradients stays within the space of gradients.

We describe now a constrained transport remapping algorithm for hexa-
hedral (quadrilateral) grids for a row of the inverse deformation gradient g
where g is represented by a low order edge element. The algorithm consists
of several parts:

1. Compute the second-order limited reconstruction of the inverse defor-
mation gradient field by computing a circulation slope centered on each
edge.
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2. Determine the upwind element for each node.

3. Perform the line integral update associated with each node.

4. Update the circulation on each edge.

We shall find that each of these operations has a natural algorithm within
the context of the edge element representation.

We assume that the inverse deformation gradient is represented using
edge elements embedded in a finite element deRham complex associated with
linear isoparametric hexahedral elements. This representation has been de-
scribed previously.2 In particular there exists an exact sequence of finite
element spaces W i(K) such that

W0(K)
∇(−→ W1(K)

∇×(−→ W2(K)
∇·(−→ W3(K). (4.46)

An explicit representation for the basis functions on the reference element K̂
in terms of the reference coordinates, −1 ≤ ξi ≤ 1, for i, j, k = 1, 2, 3 are:

Ŵ αβγ
ijk =

1

8
(1 + αξi)(1 + βξj)(1 + γξk), i *= j *= k

Ŵ αβ
ij =

1

8det JF
(1 + αξi)(1 + βξj)(Vi × Vj), i *= j

Ŵ α
i =

1

8det JF
(1 + αξi)Vi

Ŵ =
1

8det JF

where we define the Jacobian matrix by JF = (V1, V2, V3). The columns vec-
tors of this matrix are defined as Vi = (∂F1/∂ξi, ∂F2/∂ξi, ∂F3/∂ξi)T , and α,
β, and γ take on values of ±1. The isoparametric mapping for the hexahedral
element is given by

FK(ξ) =
∑

αβγ=±1

xαβγŴ αβγ
ijk (ξ). (4.47)

where xαβγ represents the physical space coordinates of the element vertices.
FK is the representation of the mapping from reference to physical coor-
dinates. The rows of the inverse deformation gradient are represented by
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g(ξ1, ξ2, ξ3) =
∑

i&=j,α,β

Γαβ
ij Ŵ αβ

ij (4.48)

where Γαβ
ij is the total circulation along each edge. This circulation exactly

equals the discrete difference of the initial Lagrangian coordinate. Elements
which share an edge also share the properly signed circulation value.

It is necessary to generate second-order accurate point values of g. These
values will be used to compute the corresponding edge-wise circulation gra-
dient. Obtaining these values at the element nodes is a non-trivial question
because the edge element representation is discontinuous at element nodes. A
projection operator must be defined to obtain high order accurate estimates
of the field at the nodes. A patch recovery operator is suggested.

The first action in the reconstruction is to extend the definition of the
edge element coefficient to contain a linear term proportional to each edge-
wise reference coordinate. This term will integrate to zero along the edge
thus contributing nothing to the total circulation. However, the term will
contribute to the update integrals associated with each node as described
later. The edge element representation for each element is now

g(ξ1, ξ2, ξ3) =
∑

i&=j &=k,α,β

Γαβ
ij (ξk)Ŵ

αβ
ij (4.49)

where, for example,
Γαβ

ij (ξk) = Γ̄αβ
ij + sαβ

ij ξk (4.50)

The edge circulation slope values are obtained by limiting based on the nodal
reconstructed values in the edge direction. To do so, compute a node centered
circulation value by dotting the reconstructed g values with the correspond-
ing Vk of the attached edge. For example,

g(α,β,±1) · V3(α,β,±1) = Γαβ
1,2(±1)/2 (4.51)

where

V3(α,β,±1) =
x(α,β, +1) − x(α,β,−1)

2
(4.52)

This gives two slopes for each edge.

sαβ
ij (±1) = ±(Γαβ

1,2(±1) − Γ̄αβ
1,2) (4.53)
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and we chose a single slope

sαβ
ij =







0 if sαβ
ij (+1)sαβ

ij (−1) < 0
min(sαβ

ij (+1), sαβ
ij (−1)) if sαβ

ij (+1) and sαβ
ij (−1) > 0

max(sαβ
ij (+1), sαβ

ij (−1)) if sαβ
ij (+1) and sαβ

ij (−1) < 0

(4.54)

A basic requirement for computation of the circulation associated with
each node is a knowledge of the upwind element associated with each edge.
This is accomplished by computing a node centered position vector offset

−v∆t = δxnc (4.55)

and determining if the direction cosines of the associated elements are positive
with respect to the outward edges. If they are all positive, an offset is present
in that element.

We now need to compute an approximate circulation contribution at each
node. The line integral at each node is conveniently given in terms of differ-
entials in the terms of reference element coordinates ξi.

∫

Γ

g · ds =

∫

Γ

g · (
∂x

∂ξ1
dξ1 +

∂x

∂ξ2
dξ2 +

∂x

∂ξ3
dξ3) (4.56)

Since the representation for g is in terms of reference element coordinates
additional major simplifications will be possible. An appropriate integration
method and a domain must be chosen. We chose a one point quadrature rule
located at the center of the node midpoint offset vector. We define

ξ̂i =
δξi

2
+ ξnc

i (4.57)

The reference element differentials for the one-point quadrature are dξ1 =
δξ1, dξ2 = δξ2 and dξ3 = δξ3. Then

∫

Γ

g · ds ≈ g(ξ̂) · (
∂x

∂ξ1
(ξ̂)δξ1 +

∂x

∂ξ2
(ξ̂)δξ2 +

∂x

∂ξ3
(ξ̂)δξ3) (4.58)

But the reconstructed field is given by Equation 4.49 which leads to
∫

Γ

g · ds ≈
∑

i&=j &=k,α,β

Γαβ
ij (ξ̂k)W

αβ
ij (ξ̂)

∂x

∂ξk
(ξ̂)δξk (4.59)
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which can be simplified to
∫

Γ

g · ds ≈
∑

i&=j &=k,α,β

Γαβ
ij (ξ̂k)(1 + αξ̂i)(1 + βξ̂j)δξk/8. (4.60)

The update contributions are now available on each node as circulations.
These can be added directly to the coordinate (potential) representation on
node or equivalently the gradient of the updates values on each edge can be
taken to update the edge circulations.

By construction G must stay within a proper discrete curl free space and
will be acceptable as long as detG > 0. This will be true at the beginning
of the calculation but may fail later in the calculation. It is quite unclear
what a rational fix might be because the degrees of freedom are differences of
Lagrangian coordinates on edges. It is possible that an optimization based
remap algorithm similar to the one advocated by Shashkov and Bochev for
divergence free remapping might work.3 We also note that, unlike the VR and
QVR update algorithms, the IDG algorithm may not be as easily reduced to
an algorithm acting only on regions of space (materials) that require stretch
and rotation information. We shall see that these issues along with the cost
of the current implementation prohibits recommendation of this algorithm
at this time for multi-material codes.
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5 Results for Given 2D Motions

We compare the methods we have described by observing each method’s
accuracy and cost. An accurate method converges on smooth solutions at
the expected rate as ∆x is decreased at a fixed Courant number. We expect
that some loss of accuracy will occur for motions that are sufficiently stressful.
Cost is represented by the time to solution.

We propose that much can be learned from specific test problems. The
greatest difficulties are generated by flows with large strains and rotations,
and we focus on how fast the stretch, rotation, and/or deformation gradient
tensors lose consistency and/or accuracy in various situations. For any given
test, the motion x(a, t) can be specified directly. The deformation gradient
is computed directly as a function of the Lagrangian coordinates. To find
the value of the deformation gradient at a spatial point, the motion must
be inverted before evaluating the deformation gradient. If desired, an alter-
native computational method for calculating exact solutions is including in
Appendix A.

In each of the following 2D test problems, stretch tensor eigenvalues and
rotation tensor matrices for both the Lagrangian and ALE cases are com-
puted using the following algorithms:

• VR method using the Hughes-Winget algorithm (HWVR)

• VR method using the Rodrigues algorithm (RVR)

• Quaternion representation of the VR method (QVR)

• Inverse Deformation Gradient Method (IDG)

Lagrangian solutions and results are denoted by prepending the letter L
to these acronymns. Computations are repeated on five different square
meshes, and the convergence rates are calculated. Additionally, the cost of
each method is compared using the finest grid.
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5.1 Constant Velocity

We expect all methods to be able to model a constant velocity profile and
deal sensibly with inflow boundary conditions from finite grids. The motion
is

x = a + v̂t (5.61)

with velocity
v = v̂ (5.62)

Thus, the exact solution of the deformation gradient is

F = I (5.63)

As expected, all methods yield exact results given these conditions. How-
ever, this problem is interesting because it allows us to see a cost comparison
of the simplest of all cases. In Table 1, only slight cost differences are visi-
ble between the Lagrangian algorithms. On the other hand, in Table 2, the
direct decomposition algorithm has a visible disadvantage.

Method CPU Time Rel. CPU Time

LHWVR 21.24 1.000

LRVR 22.17 1.044

LQVR 21.50 1.012

LIDG 20.86 0.982

Table 1: Relative and actual CPU time for Lagrangian Constant Velocity
problem
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Method CPU Time Rel. CPU Time

HWVR 69.85 1.000

RVR 69.89 1.001

QVR 69.00 0.988

IDG 79.24 1.134

Table 2: Relative and actual CPU time for ALE Constant Velocity problem

5.2 Sinusoidal Shear

The second variant uses a sinusoidal velocity field in one coordinate direction
representing a pure shear flow.

v = (0,αsin(2πx)) (5.64)

with motion
x = a + (0,αtsin(2πax)) (5.65)

The exact solution for F is

F =

(

1 0
2παtcos(2πx) 1

)

(5.66)

Tables 3 through 6 show stretch tensor eigenvalue and rotation matrix
convergence rates. All results indicate that second order convergence is
acheived as desired. Furthermore, in the Lagrangian case we see a signif-
icant cost savings using the LIDG method. However, in the ALE case, the
IDG method again displays an increased cost while the QVR method shows
an advantage.
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LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

1.07E-01 –

2.70E-02 1.99

6.77E-03 2.00

2.98E-03 2.02

1.67E-03 2.01

L1 Order

1.07E-01 –

2.70E-02 1.99

6.77E-03 2.00

2.98E-03 2.02

1.67E-03 2.01

L1 Order

1.07E-01 –

2.70E-02 1.99

6.77E-03 2.00

2.98E-03 2.02

1.67E-03 2.01

L1 Order

1.03E-01 –

2.57E-02 2.00

6.43E-03 2.00

2.86E-03 2.00

1.61E-03 2.00

Table 3: Stretch tensor eigenvalue convergence rates for Lagrangian Sinu-
soidal Shear problem.

LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

2.09E-03 –

5.99E-04 1.80

1.51E-04 1.98

6.36E-05 2.14

3.56E-05 2.02

L1 Order

2.00E-03 –

5.61E-04 1.83

1.38E-04 2.02

5.87E-05 2.11

3.28E-05 2.02

L1 Order

2.00E-03 –

5.61E-04 1.83

1.38E-04 2.02

5.87E-05 2.11

3.28E-05 2.02

L1 Order

1.81E-03 –

4.94E-04 1.87

1.16E-04 2.10

5.03E-05 2.05

2.82E-05 2.01

Table 4: Rotation tensor matrix convergence rates for Lagrangian Sinusoidal
Shear problem.

HWVR RVR QVR IDG

1/h

16

32

64

96

128

L1 Order

1.13E-01 –

2.86E-02 1.98

7.17E-03 1.99

3.19E-03 2.00

1.75E-03 2.09

L1 Order

1.13E-01 –

2.86E-02 1.98

7.17E-03 1.99

3.19E-03 2.00

1.75E-03 2.09

L1 Order

1.13E-01 –

2.86E-02 1.98

7.17E-03 1.99

3.19E-03 2.00

1.75E-03 2.09

L1 Order

1.03E-01 –

2.57E-02 2.00

6.43E-03 2.00

2.86E-03 2.00

1.61E-03 2.00

Table 5: Stretch tensor eigenvalue convergence rates for ALE Sinusoidal
Shear problem.
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HWVR RVR QVR IDG

1/h

16

32

64

96

128

L1 Order

2.44E-03 –

7.07E-04 1.79

1.82E-04 1.96

8.20E-05 1.97

4.10E-05 2.41

L1 Order

2.25E-03 –

6.36E-04 1.82

1.59E-04 2.00

7.11E-05 1.99

3.66E-05 2.31

L1 Order

2.25E-03 –

6.36E-04 1.82

1.59E-04 2.00

7.11E-05 1.99

3.66E-05 2.31

L1 Order

1.81E-03 –

4.94E-04 1.87

1.16E-04 2.10

5.02E-05 2.05

2.82E-05 2.01

Table 6: Rotation tensor matrix convergence rates for ALE Sinusoidal Shear
problem.

Method CPU Time Rel. CPU Time

LHWVR 1641.68 1.000

LRVR 1648.11 1.004

LQVR 1621.37 0.988

LIDG 1448.29 0.882

Table 7: Relative and actual CPU time for Lagrangian Sinusoidal Shear
problem

Method CPU Time Rel. CPU Time

HWVR 462.90 1.000

RVR 460.32 0.994

QVR 459.66 0.993

IDG 556.25 1.202

Table 8: Relative and actual CPU time for ALE Sinusoidal Shear problem

37



5.3 Exponential Vortex

This simple smooth vortical flow asymptotes to an irrotational 1/r angular
velocity profile

vθ =
Γ

2πr
(1 − e−r2/2) (5.67)

where Γ is the total circulation at infinity. Since the flow is parameterized
by the radius we can compute the motion and thus the deformation gradient
exactly. In particular, in polar coordinates

r = r0

θ =
Γt

2πr2
(1 − e−r2/2) + θ0 (5.68)

and via the chain rule one can compute the deformation gradient in Cartesian
coordinates. The vorticity profile is

ω =
1

r

∂

∂r
(rvθ) =

Γ

2π
e−r2/2 (5.69)

showing that a small cylindrical region of vorticity generates the flow.

As with the Sinusoidal Shear problem, the stretch tensor eigenvalue and
rotation matrix converges at second-order. The LIDG algorithm again shows
some cost benefits in the Lagrangian case, and the QVR method has a slight
advantage in the ALE case.

LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

3.93E-02 –

1.03E-02 1.94

2.60E-03 1.98

1.16E-03 1.99

6.52E-04 2.00

L1 Order

3.93E-02 –

1.03E-02 1.94

2.60E-03 1.98

1.16E-03 1.99

6.52E-04 2.00

L1 Order

3.93E-02 –

1.03E-02 1.94

2.60E-03 1.98

1.16E-03 1.99

6.52E-04 2.00

L1 Order

3.95E-02 –

1.03E-02 1.94

2.61E-03 1.98

1.17E-03 1.99

6.56E-04 2.00

Table 9: Stretch tensor eigenvalue convergence rates for Lagrangian Expo-
nential Vortex problem.
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LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

9.99E-02 –

2.72E-02 1.87

6.95E-03 1.97

3.10E-03 1.99

1.75E-03 2.00

L1 Order

9.96E-02 –

2.72E-02 1.87

6.93E-03 1.97

3.09E-03 1.99

1.74E-03 2.00

L1 Order

9.96E-02 –

2.72E-02 1.87

6.93E-03 1.97

3.09E-03 1.99

1.74E-03 2.00

L1 Order

9.99E-02 –

2.72E-02 1.87

6.96E-03 1.97

3.10E-03 1.99

1.75E-03 2.00

Table 10: Rotation tensor matrix convergence rates for Lagrangian Expo-
nential Vortex problem.

HWVR RVR QVR IDG

1/h

16

32

64

96

128

L1 Order

5.54E-02 –

1.07E-02 2.37

2.01E-03 2.42

7.93E-04 2.30

4.10E-04 2.29

L1 Order

5.54E-02 –

1.07E-02 2.37

2.01E-03 2.42

7.93E-04 2.30

4.10E-04 2.29

L1 Order

5.54E-02 –

1.07E-02 2.37

2.01E-03 2.42

7.93E-04 2.30

4.10E-04 2.29

L1 Order

1.50E-01 –

5.73E-02 1.38

1.67E-02 1.78

7.57E-03 1.95

4.33E-03 1.94

Table 11: Stretch tensor eigenvalue convergence rates for ALE Exponential
Vortex problem.

Method CPU Time Rel. CPU Time

LHWVR 116.91 1.000

LRVR 116.98 1.001

LQVR 116.98 1.001

LIDG 103.93 0.889

Table 12: Relative and actual CPU time for Lagrangian Exponential Vortex
problem
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Method CPU Time Rel. CPU Time

HWVR 184.57 1.000

RVR 182.77 0.990

QVR 179.06 0.970

IDG 187.55 1.016

Table 13: Relative and actual CPU time for ALE Exponential Vortex prob-
lem

5.4 Diverging Flow

It is equally important to consider flows with non-trivial volume change. We
consider flows with constant non-zero divergence in both cylindrical (d = 2)
and spherical (d = 3) geometry .

vr = αr/d (5.70)

where α is the divergence which will be recalled represents the logarithm
derivative of density. The flow density will change exponentially in time.
The general solution is

ρ(r, t) = ρ(re−αt/d, 0)e−αt (5.71)

where ρ(r, 0) is the initial density. In addition, x = aeαt/d so that F = eαt/dI
and detF = eαt. This test case is able to discriminate issues related to
divergent flow.

Stretch tensor convergence rates are shown in Tables 14 and 15. Rotation
tensor convegence rates are not included for this test problem because exact
results were found using every method. In addition, from the tables it can
be seen that the IDG and LIDG methods yield exact results in the stretch
tensor while the other methods demonstrate second-order convergence. This
is expected due to the linear nature of the velocity profile. As for cost, there
seems to be no significant difference between the different methods in the
Lagrangian case, but IDG continues to exhibit a disadvantage in the ALE
case.
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LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

7.89E-04 –

2.31E-04 1.77

6.29E-05 1.87

2.86E-05 1.94

1.62E-05 1.97

L1 Order

7.89E-04 –

2.31E-04 1.77

6.29E-05 1.87

2.86E-05 1.94

1.62E-05 1.97

L1 Order

7.89E-04 –

2.31E-04 1.77

6.29E-05 1.87

2.86E-05 1.94

1.62E-05 1.97

L1 Order

4.44E-16 –

1.11E-15 NA

2.66E-15 NA

1.56E-14 NA

5.77E-15 NA

Table 14: Stretch tensor eigenvalue convergence rates for Lagrangian Diverg-
ing Flow problem.

HWVR RVR QVR IDG

1/h

16

32

64

96

128

L1 Order

2.57E-04 –

7.44E-05 1.79

2.00E-05 1.89

8.58E-06 2.09

4.77E-06 2.04

L1 Order

2.57E-04 –

7.44E-05 1.79

2.00E-05 1.89

8.58E-06 2.09

4.77E-06 2.04

L1 Order

2.57E-04 –

7.44E-05 1.79

2.00E-05 1.89

8.58E-06 2.09

4.77E-06 2.04

L1 Order

2.74E-15 –

3.95E-15 NA

7.28E-15 NA

5.22E-14 NA

1.18E-14 NA

Table 15: Stretch tensor eigenvalue convergence rates for ALE Diverging
Flow problem.

Method CPU Time Rel. CPU Time

LHWVR 133.04 1.000

LRVR 133.66 1.005

LQVR 131.84 0.991

LIDG 135.61 1.019

Table 16: Relative and actual CPU time for Lagrangian Diverging Flow
problem
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Method CPU Time Rel. CPU Time

HWVR 808.47 1.000

RVR 812.77 1.005

QVR 790.02 0.977

IDG 912.10 1.128

Table 17: Relative and actual CPU time for ALE Diverging Flow problem

5.5 ABC Vortical Flow

We now consider a flow field with discontinuities in the vorticity field (i.e.
discontinuous velocity gradients). Consider a simple incompressible flow in
which tangential velocity discontinuities are allowed. A cylindrical block ro-
tates at constant angular velocity, surrounded by an irrotational circular flow
region with constant circulation, surrounded finally by a flow with negative
vorticity until the flow drops to a zero velocity. The equations for the flow
are

vθ = ω0r 0 < r < a (5.72)

vθ =
ω0a2

r
a < r < b (5.73)

vθ =
ω0a2

r

(

c2 − r2

c2 − b2

)

b < r < c (5.74)

vθ = 0 c < r (5.75)

This problem provides a region of pure local rotation, a region of pure local
stretch, and a mixed region with both stretch and rotation, as well as a qui-
escent region. As with the exponential vortex, the solution can be obtained
explicitly in polar coordinates and the motion and deformation gradient cal-
culated explicitly.

Convergence rates for the Lagrangian methods are shown in Tables 18
and 19. In this case we get approximately first-order accuracy as might be
expected.
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LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

2.39E-01 –

1.37E-01 0.80

6.03E-02 1.18

3.58E-02 1.29

2.38E-02 1.42

L1 Order

2.39E-01 –

1.37E-01 0.80

6.03E-02 1.18

3.58E-02 1.29

2.38E-02 1.42

L1 Order

2.39E-01 –

1.37E-01 0.80

6.03E-02 1.18

3.58E-02 1.29

2.38E-02 1.42

L1 Order

2.39E-01 –

1.37E-01 0.80

6.03E-02 1.18

3.58E-02 1.29

2.38E-02 1.42

Table 18: Stretch tensor eigenvalue convergence rates for Lagrangian ABC
Vortical Flow problem.

LHWVR LRVR LQVR LIDG

1/h

16

32

64

96

128

L1 Order

3.93E-01 –

2.80E-01 0.49

1.62E-01 0.79

1.02E-01 1.13

8.17E-02 0.78

L1 Order

3.93E-01 –

2.80E-01 0.49

1.62E-01 0.79

1.02E-01 1.13

8.17E-02 0.78

L1 Order

3.93E-01 –

2.80E-01 0.49

1.62E-01 0.79

1.02E-01 1.13

8.17E-02 0.78

L1 Order

3.93E-01 –

2.80E-01 0.49

1.62E-01 0.79

1.02E-01 1.13

8.17E-02 0.78

Table 19: Rotation tensor matrix convergence rates for Lagrangian ABC
Vortical Flow problem.
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Convergence rates for the ALE methods are shown in Tables 20 and 21.
It appears that in this ALE case that none of the algorithms are converging.
It seems that the gradient jumps in the solution are not well-approximated
and pollute the solution.

HWVR RVR QVR IDG

1/h

16

32

64

96

128

L1 Order

1.77E-01 –

1.24E-01 0.52

7.05E-02 0.81

5.01E-02 0.84

3.83E-02 0.94

L1 Order

1.77E-01 –

1.24E-01 0.52

7.05E-02 0.81

5.01E-02 0.84

3.83E-02 0.94

L1 Order

1.77E-01 –

1.24E-01 0.52

7.05E-02 0.81

5.01E-02 0.84

3.83E-02 0.94

L1 Order

2.58E-01 –

1.81E-01 0.51

1.16E-01 0.64

8.73E-02 0.70

7.14E-02 0.70

Table 20: Stretch tensor eigenvalue convergence rates for ALE ABC Vortical
Flow problem.

HWVR RVR QVR IDG

1/h

16

32

64

96

128

L1 Order

3.76E-01 –

1.49E-01 1.34

9.97E-02 0.58

8.66E-02 0.35

8.43E-02 0.09

L1 Order

3.76E-01 –

1.49E-01 1.34

9.96E-02 0.58

8.66E-02 0.35

8.43E-02 0.09

L1 Order

3.70E-01 –

1.42E-01 1.39

9.32E-02 0.60

8.19E-02 0.32

8.05E-02 0.06

L1 Order

4.46E-01 –

2.29E-01 0.96

1.58E-01 0.53

1.36E-01 0.37

1.32E-01 0.10

Table 21: Rotation tensor matrix convergence rates for ALE ABC Vortical
Flow problem.
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Method CPU Time Rel. CPU Time

LHWVR 136.10 1.000

LRVR 136.03 1.000

LQVR 134.64 0.989

LIDG 118.90 0.874

Table 22: Relative and actual CPU time for Lagrangian ABC Vortical Flow
problem

Method CPU Time Rel. CPU Time

HWVR 109.96 1.000

RVR 110.04 1.001

QVR 106.72 0.971

IDG 115.37 1.049

Table 23: Relative and actual CPU time for ALE ABC Vortical Flow problem

6 Results for Given 3D Motions

We now examine two of the previous described test problems in the context
of a 3D simulation. The 3D meshes are Cartesian and coordinate aligned but
the axis of rotation is misaligned and in the direction (0.5,0.3,0.8). We also
test each problem with the axis of rotation aligned to each of the three axes,
but the results are not included here. We run the problem just long enough
to capture an estimate of the convergence rate.
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6.1 3D Exponential Vortex

From Tables 24 to 27 it is apparent that second-order convergence is also
achieved in the 3D version of the Exponential Vortex problem. Additionally,
it can be seen that the LIDG algorithm has a large cost advantantage in the
Lagrangian case, and the QVR algorithm is the fastest in the ALE case.

LHWVR LRVR LQVR LIDG

1/h

4

8

16

32

64

L1 Order

1.58E-01 –

8.12E-02 0.96

2.55E-02 1.67

6.88E-03 1.89

1.75E-03 1.98

L1 Order

1.58E-01 –

8.12E-02 0.96

2.55E-02 1.67

6.88E-03 1.89

1.75E-03 1.98

L1 Order

1.58E-01 –

8.12E-02 0.96

2.55E-02 1.67

6.88E-03 1.89

1.75E-03 1.98

L1 Order

1.58E-01 –

8.12E-02 0.96

2.52E-02 1.69

6.75E-03 1.90

1.71E-03 1.98

Table 24: Stretch tensor eigenvalue convergence rates for 3D Lagrangian
Exponential Vortex problem.

HWVR RVR QVR IDG

1/h

4

8

16

32

64

L1 Order

1.82E-01 –

1.05E-01 0.80

2.93E-02 1.84

6.15E-03 2.25

1.24E-03 2.31

L1 Order

1.82E-01 –

1.05E-01 0.80

2.93E-02 1.84

6.15E-03 2.25

1.24E-03 2.31

L1 Order

1.82E-01 –

1.05E-01 0.80

2.93E-02 1.84

6.15E-03 2.25

1.24E-03 2.31

L1 Order

1.85E-01 –

1.27E-01 0.55

6.65E-02 0.93

2.91E-02 1.19

8.58E-03 1.76

Table 25: Stretch tensor eigenvalue convergence rates for 3D ALE Exponen-
tial Vortex problem.

.
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LHWVR LRVR LQVR LIDG

1/h

4

8

16

32

64

L1 Order

3.16E-01 –

1.26E-01 1.32

3.64E-02 1.79

9.40E-03 1.95

2.37E-03 1.99

L1 Order

3.16E-01 –

1.26E-01 1.32

3.64E-02 1.79

9.40E-03 1.95

2.37E-03 1.99

L1 Order

3.16E-01 –

1.26E-01 1.33

3.62E-02 1.80

9.32E-03 1.96

2.34E-03 1.99

L1 Order

3.17E-01 –

1.28E-01 1.31

3.68E-02 1.79

9.51E-03 1.95

2.39E-03 1.99

Table 26: Rotation tensor matrix convergence rates for 3D Lagrangian Ex-
ponential Vortex problem.

HWVR RVR QVR IDG

1/h

4

8

16

32

64

L1 Order

3.47E-01 –

1.76E-01 0.98

5.87E-02 1.58

1.36E-02 2.11

2.93E-03 2.21

L1 Order

3.47E-01 –

1.75E-01 0.98

5.84E-02 1.59

1.34E-02 2.12

2.89E-03 2.22

L1 Order

3.48E-01 –

1.72E-01 1.02

5.33E-02 1.69

1.22E-02 2.13

2.71E-03 2.17

L1 Order

3.92E-01 –

2.62E-01 0.58

1.30E-01 1.01

4.58E-02 1.51

1.32E-02 1.79

Table 27: Rotation tensor matrix convergence rates for 3D ALE Exponential
Vortex problem.

Method CPU Time Rel. CPU Time

LHWVR 1870.25 1.000

LRVR 1870.97 1.000

LQVR 1871.89 1.001

LIDG 1693.54 0.906

Table 28: Relative and actual CPU time for 3D Lagrangian Exponential
Vortex problem
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Method CPU Time Rel. CPU Time

HWVR 4220.42 1.000

RVR 4219.98 1.000

QVR 4024.52 0.954

IDG 4364.78 1.034

Table 29: Relative and actual CPU time for 3D ALE Exponential Vortex
problem

6.2 3D ABC Vortical Flow

It will be seen that convergence rates for this problem appear to be ap-
proaching first-order for the Lagrangian cases. Something clearly less than
first order is in evidence for the ALE results. This is consistent with the
non-smooth nature of the imposed motion.

LHWVR LRVR LQVR LIDG

1/h

4

8

16

32

64

L1 Order

7.76E-02 –

5.99E-02 0.37

2.90E-02 1.05

1.50E-02 0.95

7.19E-03 1.06

L1 Order

7.76E-02 –

5.99E-02 0.37

2.90E-02 1.05

1.50E-02 0.95

7.19E-03 1.06

L1 Order

7.76E-02 –

5.99E-02 0.37

2.90E-02 1.05

1.50E-02 0.95

7.19E-03 1.06

L1 Order

7.77E-02 –

5.99E-02 0.38

2.90E-02 1.05

1.50E-02 0.95

7.20E-03 1.06

Table 30: Stretch tensor eigenvalue convergence rates for 3D Lagrangian
ABC Vortical Flow problem.
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HWVR RVR QVR IDG

1/h

4

8

16

32

64

L1 Order

7.75E-02 –

6.11E-02 0.34

3.06E-02 1.00

1.68E-02 0.86

8.78E-03 0.94

L1 Order

7.75E-02 –

6.11E-02 0.34

3.06E-02 1.00

1.68E-02 0.86

8.78E-03 0.94

L1 Order

7.75E-02 –

6.11E-02 0.34

3.06E-02 1.00

1.68E-02 0.86

8.78E-03 0.94

L1 Order

7.89E-02 –

6.19E-02 0.35

3.26E-02 0.93

1.90E-02 0.78

1.09E-02 0.81

Table 31: Stretch tensor eigenvalue convergence rates for 3D ALE ABC
Vortical Flow problem.

LHWVR LRVR LQVR LIDG

1/h

4

8

16

32

64

L1 Order

1.39E-01 –

6.83E-02 1.02

5.19E-02 0.40

3.56E-02 0.54

2.46E-02 0.54

L1 Order

1.39E-01 –

6.83E-02 1.02

5.19E-02 0.40

3.56E-02 0.54

2.46E-02 0.54

L1 Order

1.39E-01 –

6.83E-02 1.02

5.19E-02 0.40

3.56E-02 0.54

2.46E-02 0.54

L1 Order

1.39E-01 –

6.83E-02 1.02

5.19E-02 0.40

3.56E-02 0.54

2.46E-02 0.54

Table 32: Rotation tensor matrix convergence rates for 3D Lagrangian ABC
Vortical Flow problem.

HWVR RVR QVR IDG

1/h

4

8

16

32

64

L1 Order

1.39E-01 –

6.93E-02 1.00

5.31E-02 0.39

3.66E-02 0.53

2.64E-02 0.47

L1 Order

1.39E-01 –

6.93E-02 1.00

5.31E-02 0.39

3.66E-02 0.53

2.64E-02 0.47

L1 Order

1.39E-01 –

6.93E-02 1.00

5.30E-02 0.39

3.66E-02 0.53

2.64E-02 0.47

L1 Order

1.41E-01 –

7.18E-02 0.97

5.64E-02 0.35

4.05E-02 0.48

3.07E-02 0.40

Table 33: Rotation tensor matrix convergence rates for 3D ALE ABC Vortical
Flow problem.
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Method CPU Time Rel. CPU Time

LHWVR 1149.51 1.000

LRVR 1143.12 0.994

LQVR 1150.23 1.001

LIDG 1049.94 0.913

Table 34: Relative and actual CPU time for 3D Lagrangian ABC Vortical
Flow problem

Method CPU Time Rel. CPU Time

HWVR 2459.75 1.000

RVR 2460.67 1.000

QVR 2400.43 0.976

IDG 2668.27 1.085

Table 35: Relative and actual CPU time for 3D ALE ABC Vortical Flow
problem
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7 A Three Dimensional Impact Problem

Next we compare these various approaches on a more realistic 3D calcula-
tion involving the impact of a penetrator into a target. Due to the nature
of the problem, only the ALE case is studied. Lagrangian methods do not
prove to be sufficiently robust. Furthermore, we do not show the constrained
transport approach (IDG) because it is not fully implemented and work-
ing for multiple material calculations and we have not resolved the issue of
maintaining positivity of the inverse deformation gradient. Since the current
single material implementation is significantly more expensive this algorithm
has not been pursued further.

Table 36 shows time comparisons for the HWVR, RVR, and QVR ap-
proaches. In addition, first-order and second-order time stepping schemes
have been implemented with each approach and the two methods that uti-
lize a tensor rotation representation (HWVR and RVR) both show results
with the iterative polar decomposition (Iterative) and the direct polar de-
composition (Direct) methods for computating an updated rotation tensor
after component by component remap.

Method Rotation VR Update Time(s) Relative Steps µs/el/step
Projection Time Order Time

HWVR Iterative 1st 166.82 1.0 446 36.528
HWVR Iterative 2nd 170.05 1.019 456 36.418
HWVR Direct 1st 166.78 1.0 446 36.518
HWVR Direct 2nd 171.49 1.028 456 36.726
RVR Iterative 1st 167.29 1.003 447 36.547
RVR Iterative 2nd 167.28 1.003 447 36.545
RVR Direct 1st 166.08 0.996 447 36.284
RVR Direct 2nd 171.87 1.03 459 36.567
QVR UQuat 1st 172.02 1.031 465 36.127
QVR UQuat 2nd 170.76 1.024 459 36.331

Table 36: 3D impact test with varying update methods and representations
for λs = 10−5.

We observe from this table that using a quaternion representation for
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the rotation tensor yields a slight computational advantage in terms of com-
putational cost per cycle. The extra cost for using the second-order time
integration VR methodology is barely visible. However, for some reason in
this test case we observe additional cycles indicating some sort of feedback
which has lowered the time step for this test problem which leads to no real
net benefit.

We can also optionally compute the midstep rotation tensor using the ex-
ponential map interpolation methodology outlined in this report for purposes
of allowing hypo-elastic models to be second-order in time. The possibility
was mentioned in a previous report.7 However, we will not investigate the
utility of this approach here as it is intimately involved with the time accu-
racy of general non-linear elastic-plastic hypo-elastic models and this subject
deserves separate attention.26

8 Conclusions

We have characterized various approaches for tracking information associ-
ated with the kinematics of the deformation of solid materials when explicit
rotation tensors are required. These approaches are applicable for use in
Lagrangian/Eulerian approaches in which a full kinematic description is re-
quired. Examination of the various methods shows that the updated stretch
and rotation method with a quaternion representation for the rotation ap-
pears to have the advantage at this time. Direct polar decomposition ap-
proaches with constrained transport remapping appear to be viable in prin-
ciple but the current implementation is not competitive with the updated
polar decomposition approaches since issues with efficiency, multi-material
management and maintenance of the positivity of the inverse deformation
gradient have not yet been resolved.
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A Alternative Method For Calculating Exact
Solutions

It is possible to compute an arbitrary motion and the associated deformation
gradient associated with the specification of a given velocity field, v(x, t).
This problem can be solved in general by integrating the set of ordinary
differential equations (ODE)

ẋ = v(x, t) (A.76)

Ḟ = L(x, t)F (A.77)

x(0) = a (A.78)

F(0) = I (A.79)

for any initial Lagrangian position a and L = ∇v. If this set of ODEs can be
solved exactly, F(x, t) can be written explicitly which in general is preferable.

If the solution cannot be obtained exactly, it may be obtained numerically
using an ODE solver as follows. Assume we desire the solution at a point x̂
at times 0 = T0 < T1 < · · · < Tn. We apply a Newton iteration on a for a
given x̂ using

ak+1
n = ak

n − F−1(ak
n)(x(ak

n) − x̂), k = 0, 1, · · · ,Kn (A.80)

where F and x are obtained by numerical solution of Equations A.76 to A.79
to time Tn. The subscript refers to the time level and the superscript to the
iteration level. Kn is the number of iterations to achieve convergence. The T0

solution is, of course, ak
0 = x̂, and thereafter we use as initial guesses for the

Newton iteration a0
n = aKn−1

n−1 This procedure may be used to compute the
“exact” solution corresponding to any desired spatial velocity field provided
that sufficient accuracy is imposed on the ODE solver.
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