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HIGHLY EFFICIENT STRONG STABILITY-PRESERVING
RUNGE–KUTTA METHODS WITH LOW-STORAGE

IMPLEMENTATIONS∗
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Abstract. Strong stability-preserving (SSP) Runge–Kutta methods were developed for time
integration of semidiscretizations of partial differential equations. SSP methods preserve stability
properties satisfied by forward Euler time integration, under a modified time-step restriction. We
consider the problem of finding explicit Runge–Kutta methods with optimal SSP time-step restric-
tions, first for the case of linear autonomous ordinary differential equations and then for nonlinear or
nonautonomous equations. By using alternate formulations of the associated optimization problems
and introducing a new, more general class of low-storage implementations of Runge–Kutta methods,
new optimal low-storage methods and new low-storage implementations of known optimal methods
are found. The results include families of low-storage second and third order methods that achieve
the maximum theoretically achievable effective SSP coefficient (independent of stage number), as
well as low-storage fourth order methods that are more efficient than current full-storage methods.
The theoretical properties of these methods are confirmed by numerical experiment.

Key words. method of lines, strong stability-preserving, monotonicity, low-storage, Runge–
Kutta methods
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1. Introduction. Strong stability-preserving (SSP) methods are numerical
methods for solving ordinary differential equations (ODEs) that preserve monotonic-
ity and contractivity properties of the numerical solution under certain assumptions
on the equations and the time step.

Development of SSP methods was originally motivated by the following consider-
ation. Solutions of many important partial differential equations (PDEs)

(1.1) ut = f(t, u, ux, uxx, . . . )

satisfy a monotonicity property:

||u(t + τ)|| ≤ ||u(t)|| ∀τ ≥ 0.(1.2)

Here || · || may be a norm or, more generally, any convex functional. For instance, the
solutions to scalar hyperbolic conservation laws are monotonic in the total variation
seminorm. When employing a discrete approximation to the PDE (1.1), it is often
important to satisfy the discrete monotonicity property analogous to (1.2)

(1.3) ||un+1|| ≤ ||un||,

where the vector un ∈ R
N is a discrete approximation of u(tn). However, it is very

difficult to find high-order full discretizations that satisfy the discrete monotonicity
property (1.3) directly.
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A common approach to solving PDEs is the method of lines, which involves
discretizing in space to obtain a system of ODEs

(1.4) u′(t) = F (t,u)

and integrating this system by using an ODE solver. Again the vector u ∈ R
N is a

discrete approximation of the function u, and the function F : R × R
N → R

N is a
discrete approximation of the function f .

We now assume that the semidiscretization is performed so that the solution of
the resulting system of ODEs satisfies the same monotonicity property (1.2) under
forward Euler integration, i.e.,

(1.5) ||u(t) + ΔtF (t,u(t))|| ≤ ||u(t)|| ∀u, ∀Δt ≤ ΔtFE.

Here ΔtFE represents a fixed maximal time step for which (1.5) holds. In the ODE
literature, condition (1.5) has been referred to as a circle condition because, in the
case that F is linear, (1.5) implies that the eigenvalues of F lie in a circle of radius
ΔtFE centered at λ = −ΔtFE.

A solution obtained by using an ODE solver other than forward Euler may in gen-
eral violate the monotonicity property (1.3); however, if the integration is performed
by using a strong stability-preserving ODE solver, then monotonicity will be assured
if the time step satisfies

(1.6) Δt ≤ cΔtFE,

where c is the SSP coefficient of the method. This leads to a simpler way of proving
monotonicity of the fully discrete scheme, since ΔtFE depends only on the spatial
discretization and c depends only on the temporal discretization. Just as the method
of lines separates the analysis of accuracy for the spatial and temporal discretizations,
the SSP approach separates the analysis of (temporal) monotonicity for the spatial
and temporal discretizations.

In the numerical solution of systems of ODEs, it is desirable to ensure that errors
in the initial conditions or numerical errors at a given step do not grow unduly as they
are propagated in subsequent steps. Given two approximate solutions un and ũn at
time tn and by letting un+1 and ũn+1 denote the corresponding numerical solutions
at the next time step tn+1, the numerical solution is said to be contractive if

(1.7) ||un+1 − ũn+1|| ≤ ||un − ũn||.

By interpreting ũn as a perturbation of un due to numerical errors, we see that con-
tractivity implies that these errors do not grow as they are propagated. If the system
of ODEs (1.4) is such that the contractivity property (1.7) holds under forward Euler
integration subject to some maximal time step ΔtFE, then (1.7) will also be satisfied
under integration with an SSP method, under the modified time-step restriction (1.6).
In the remainder of this work, the discussion will focus on monotonicity rather than
contractivity, but the main results apply to both cases (for more details regarding
contractivity preservation, see [19]).

In the special case that the relevant convex functional || · || is an inner product
norm, then monotonicity and contractivity are preserved by the broader class of circle
contractive methods under a less stringent time-step restriction [2, 12].
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SSP time discretizations were originally introduced in [27], where they were re-
ferred to as TVD methods. Among the Runge–Kutta methods presented there, two
have been very widely implemented: the two-stage, second order method of Heun and
a three-stage, third order method originally proposed by Fehlberg (though not in the
context of SSP methods). These methods achieve the largest SSP coefficient, or rela-
tive nonlinearly stable time step, among all two-stage, second order and three-stage,
third order methods, respectively.

When the time step is limited by monotonicity or contractivity, the computational
efficiency of a method may be measured by the effective SSP coefficient:

(1.8) ceff =
c

s
,

where s is the number of function evaluations per step (the number of stages for
Runge–Kutta methods). The work required to solve a problem is inversely propor-
tional to ceff. By definition, the forward Euler method has ceff = 1.

Among the various classes of ODE solvers, explicit Runge–Kutta methods have
proven to have the best potential for large effective SSP coefficients. Results for SSP
multistep methods are disappointing, in the sense that the SSP coefficients are very
small [26, 9, 14, 6] (even for implicit multistep methods, c ≤ 2 for methods of higher
than first order accuracy). By considering a weaker property wherein particular start-
ing procedures are prescribed, Ruuth and Hundsdorfer [23] have developed methods
that are competitive in some cases with optimal Runge–Kutta methods; however,
these methods require more memory and in some cases were observed to violate the
SSP property. Also, they are surpassed in efficiency by the optimal Runge–Kutta
methods of the present work.

Implicit SSP Runge–Kutta methods of higher than first order accuracy appear
to be subject to the bound ceff ≤ 2 [16], whereas explicit Runge–Kutta methods can
have ceff ≈ 1. Typically the cost of the implicit solve more than doubles the work per
time step, making explicit SSP Runge–Kutta methods more efficient. Therefore, in
this paper we consider only explicit Runge–Kutta methods. However, we note that
explicit SSP Runge–Kutta methods cannot be more than fourth order accurate [19]
(unless they involve downwinding), while implicit SSP Runge–Kutta methods can
have order of accuracy up to six [16].

Extensive efforts have been made to find more efficient explicit SSP Runge–Kutta
methods [19, 8, 9, 29, 30, 22]. Although increasingly efficient methods have been found,
most require increased storage and have not been widely used. A few studies have
considered optimal low-storage SSP methods [8, 9, 22]. Some attention has also been
paid to finding optimal SSP methods for linear systems [18, 7].

In all previous searches, it has been found that optimizing either one of efficiency
or memory leads to the other being less optimal. Nevertheless, in this work we present
methods that achieve the theoretical optimum simultaneously in both properties.

The improved results in the current work are due to two factors. First, the opti-
mization problem is formulated by using the Butcher form and a simplified algebraic
characterization of the SSP coefficient, as suggested in [4]. This allows for solution of
the optimization problem for much larger numbers of stages. Second, we consider a
much more general class of low-storage methods, by using the Shu–Osher form itself
to facilitate low-storage implementations.

The paper is organized as follows: in section 2 we discuss strong stability-pre-
serving methods for linear autonomous systems and present an efficient algorithm
for computing optimal methods. In section 3 we discuss strong stability-preserving
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methods for nonlinear, nonautonomous systems and present optimal methods. In
section 5 we verify the properties of the methods by using simple numerical tests.

2. Methods for linear autonomous systems.

2.1. Strong stability preservation for linear systems. An s-stage Runge–
Kutta method is usually represented by its Butcher array, consisting of an s×s matrix
A and two s× 1 vectors b and c. The Runge–Kutta method defined by these arrays
approximates the solution of the system of ODEs (1.4) by the iteration

yi = un + Δt

s∑
j=1

aijF
(
tn + cjΔt,yj

)
, 1 ≤ i ≤ s,

un+1 = un + Δt

s∑
j=1

bjF
(
tn + cjΔt,yj

)
.(2.1)

It is convenient to define the (s + 1) × s matrix

(2.2) K =

(
A

bT

)
.

We will always make the standard assumption that ci =
∑s

j=1 aij . For explicit meth-
ods (which are the subject of this work), we also have aij = 0 for j ≥ i.

When applied to a linear autonomous system of ODEs

(2.3) ut = Lu,

the Runge–Kutta method (2.1) reduces to the iteration

(2.4) un+1 = φ(ΔtL)un,

where φ is a rational function called the stability function of the Runge–Kutta method
[10].

When solving (2.3), the time-step restriction for strong stability preservation de-
pends on the radius of absolute monotonicity of φ.

Definition 2.1 (radius of absolute monotonicity (of a function)). The radius of
absolute monotonicity R(ψ) of a function ψ is the largest value of r such that ψ(x)
and all of its derivatives exist and are nonnegative for x ∈ (−r, 0].

We now consider linear autonomous systems of ODEs that satisfy the monotonic-
ity property (1.3) under a forward Euler step; this leads to the linear version of the
circle condition (1.5):

(2.5) ||u + ΔtFELu|| ≤ ||u||.

Note that, if || · || represents a norm, this reduces to ||I + ΔtFEL|| ≤ 1, where || · || is
the induced matrix norm.

Let the class L(h) denote the set of all pairs (L, ||·||), where the matrix L ∈ RN×N

and convex functional || · || are such that the circle condition (2.5) is satisfied with



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL EXPLICIT SSP METHODS 2117

ΔtFE = h. Let (L, || · ||) ∈ L(ΔtFE), and let φ denote the stability function of
a consistent Runge–Kutta method. Consider the Taylor expansion of φ(x) about
x = −r:

(2.6) φ(x) =

s∑
i=0

γi

(
1 +

x

r

)i

.

Suppose that φ is absolutely monotonic at −r or, in other words, that all of the
coefficients are nonnegative: γi ≥ 0, and let Δt ≤ rΔtFE. Then

||un+1|| = ||φ(ΔtL)un|| =

∣∣∣∣∣
∣∣∣∣∣

s∑
i=0

γi

(
I +

Δt

r
L

)i

un

∣∣∣∣∣
∣∣∣∣∣(2.7)

≤
s∑

i=0

γi

∣∣∣∣
∣∣∣∣
(

un +
Δt

r
Lun

)∣∣∣∣
∣∣∣∣
i

(2.8)

≤
s∑

i=0

γi||un|| = ||un||.(2.9)

Here we have used the fact that
∑

i γi = 1 for any consistent method. Hence the
numerical solution will be monotonic if Δt ≤ R(φ)ΔtFE. This is a sufficient condition;
to state precisely the sense in which it is necessary, we need the following definition.

Definition 2.2 (strong stability preservation for linear systems). Given a
Runge–Kutta method, the linear SSP coefficient of the method is the largest constant
clin ≥ 0 such that the numerical solution obtained with the Runge–Kutta method sat-
isfies the monotonicity property ||un+1|| ≤ ||un|| for all (L, || · ||) ∈ L(ΔtFE) whenever

(2.10) Δt ≤ clinΔtFE.

If clin > 0, the method is said to be strong stability-preserving for linear systems.
The following result is due to Spijker [28].
Theorem 1. Let a Runge–Kutta method be given with stability function φ. Let

clin denote the linear SSP coefficient of the method (see Definition 2.2). Let R(φ)
denote the radius of absolute monotonicity of φ (Definition 2.1). Then

(2.11) clin = R(φ).

In other words, the method preserves strong stability for problems in L(ΔtFE) under
the (maximal) time-step restriction

(2.12) Δt ≤ R(φ)ΔtFE.

Remark 1. This time-step restriction is sharp only in the sense of considering all
of L(ΔtFE). By considering a specific matrix L, convex functional || · ||, and initial
condition u(0), it may be possible to derive a larger time-step restriction that still
preserves monotonicity. For instance, when || · || is a norm, the monotonicity condition
reduces to ||φ(ΔtL)|| ≤ 1. Thus one can directly find the maximal time step such
that this condition holds, which may be larger than that given by (2.12).
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Remark 2. Under the assumption that γi ≥ 0, the Taylor expansion (2.6) may be
thought of as rewriting the Runge–Kutta method as a convex combination of (iterated)
forward Euler steps of length at most ΔtFE. This reasoning was used directly in [9, 7]
to find optimal SSP methods for linear systems.

Remark 3. It is interesting to note that in [28] the necessity of the time-step
restriction (2.12) was demonstrated by considering the maximum norm and the matrix
L corresponding to a first order upwind differencing approximation of the advection
equation. We will return to this point in section 5.1.

2.2. Optimal methods for linear systems. By virtue of Theorem 1, for solu-
tion of linear autonomous ODEs, the search for optimal SSP methods reduces to maxi-
mization of R(φ), the radius of absolute monotonicity of the stability function. For ex-
plicit Runge–Kutta methods with s stages and order p, φ(x) is a polynomial of degree
s that approximates the exponential function to order p near x = 0. Kraaijevanger
[18] found optimal methods for many values of s and p, including 1 ≤ p ≤ s ≤ 10, and
p ∈ {1, 2, 3, 4, s − 1, s − 2, s − 3, s − 4} for any s. He also provided an algorithm for
the computation of the optimal coefficient and method for arbitrary s and p. Unfor-
tunately, the computational cost of his algorithm grows exponentially in s and p. A
different but related approach was used by Gottlieb and others in [9, 7] to find results
for the cases s ∈ {1, 2, p−1, p} and arbitrary values of p (these results were also found
by Kraaijevanger).

By implementing Kraaijevanger’s algorithm in Maple, we found that on a 2.5 Ghz
G5 processor, for s = 16, p = 8, the solution requires days, and for s ≥ 20, p ≈ s/2,
the solution would require years of computation. A more efficient method of solution
for arbitrary s and p is described below.

Let Rs,p(φ) denote the maximum of r(φ) over all methods with s stages and order
of accuracy p, and let Φs,p denote the corresponding optimal polynomial. By writing
the stability function in terms of its Taylor series about x = 0:

(2.13) φ(x) =

s∑
i=0

γ̄ix
i,

the problem of finding Rs,p(φ) can be written

maximize r subject to

γ̄i =
1

i!
(0 ≤ i ≤ p),(2.14a)

φ(k)(x) =

s−k∑
i=k

⎛
⎝ i∏

j=i−k+1

j

⎞
⎠ γ̄ix

i−k ≥ 0 (−r ≤ x ≤ 0).(2.14b)

The last inequality is required for 0 ≤ k ≤ s. This appears to be a difficult problem,
because the domain of the inequality constraints depends on the objective function.

Representing φ via its Taylor expansion about x = −r, as in (2.6) above, leads to
the alternate formulation [18]

maximize r subject to

s∑
j=0

(
i−1∏
k=0

(j − k)

)
γj = ri (0 ≤ i ≤ p),(2.15a)

γj ≥ 0 (0 ≤ j ≤ s),(2.15b)
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with the convention
∏−1

k=0 = 1. The advantage of this formulation is that the in-
equality constraints do not explicitly involve r, yet they imply that φ is absolutely
monotonic on (−r, 0]. By defining

Bij =

s∑
j=0

(
i−1∏
k=0

(j − k)

)
,(2.16a)

d(r)i = ri,(2.16b)

we can write (2.15) as

maximize r subject to

Bγ = d(r),(2.17a)

γ ≥ 0.(2.17b)

For a fixed value of r, (2.17) is just a linear programming feasibility problem. We wish
to find the largest value of r such that the problem defined by these constraints is
feasible. This can be done by using bisection. We have implemented this approach by
using Matlab and the semidefinite programming solver SeDuMi. Unfortunately, even
after rescaling to improve conditioning, SeDuMi typically finds solutions to only about
five digits of accuracy. We have used the following approach to obtain approximately
ten digits of accuracy and also to obtain the optimal polynomials.

It is shown in [19] that, for the optimal polynomial, at most p of the components
of γ are nonzero. We have found that the zero and nonzero elements of γ are well
separated in magnitude in the numerical solution given by SeDuMi. By letting R
denote the optimal value, we have

(2.18) B̂γ̂ = d(R),

where γ̂ includes only the nonzero components of γ and B̂ includes only the corre-
sponding columns of B. We can find R by forming the matrix [B̂ d(r)] and varying
r to minimize its smallest singular value (i.e., enforcing the condition that d(r) be in

the range of B̂). Finally, to find the optimal polynomial itself, we compute

(2.19) γ̂ = B̂−1d(R).

Then Φs,p is given by (2.6).
For large values of s, numerical underflow occurs in the representation of B be-

cause of the large difference in magnitude of its components. This is the limitation on
the values s and p that this method is able to solve. Even so, it is capable of quickly
solving cases with very large s and modest p (e.g., s = 10000, p = 3).

Table 2.1 lists values of Rs,p(φ) for s ≤ 16, p ≤ 30. For a discussion of many
interesting properties of this table, see [19]. Because we are primarily interested
in Rs,p(φ) as an upper bound on the SSP coefficient for nonlinear methods (see
the next section), and to save space, we do not give the optimal polynomials here.
They may easily be computed with the algorithm just described. A simple Matlab

implementation of this algorithm is available from the author’s website.
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3. Methods for nonlinear systems.

3.1. Strong stability preservation for nonlinear systems. We now consider
general (nonlinear, nonautonomous) systems of ODEs. Analogous to L(h), we define
the class F(h) as the set of all pairs (F, || · ||), where the function F and convex
functional || · || are such that the circle condition (1.5) is satisfied with ΔtFE = h. The
following definition is the nonlinear analogue of Definition 2.2.

Definition 3.1 (strong stability preservation). The SSP coefficient of a Runge–
Kutta method (2.1) is the largest constant c ≥ 0 such that the numerical solution
obtained with the Runge–Kutta method satisfies the monotonicity properties

||yi|| ≤ ||un|| (1 ≤ i ≤ s),(3.1a)

||un+1|| ≤ ||un||(3.1b)

for all (F, || · ||) ∈ F(ΔtFE) whenever

(3.2) Δt ≤ cΔtFE.

If c > 0, the method is said to be strong stability-preserving.
In the case of linear systems, we saw that monotonicity is preserved if the method

can be rewritten as a convex combination of forward Euler steps. For the case of
nonlinear systems, it is necessary to rewrite each stage as such a combination. To this
end, an alternative representation for explicit Runge–Kutta methods was introduced
by Shu and Osher1 [27]:

y0 = un,(3.3a)

yi =

i−1∑
j=0

(αi,jyk + Δtβi,jF (tn + ck−1Δt,yk)) , αi,j ≥ 0, i = 1, . . . , s,(3.3b)

un+1 = ys.(3.3c)

Care should be taken to avoid confusing the SSP coefficient c with the abscissas of the
method ck; the latter will always have a subscripted index. Consistency requires that∑i−1

j=0 αi,j = 1. Thus, if αi,j ≥ 0 and βi,j ≥ 0, all of the intermediate stages yi in (3.3)

are simply convex combinations of forward Euler steps, with Δt replaced by
βi,j

αi,j
Δt.

Therefore, the solution obtained with this method will satisfy the monotonicity prop-
erty (1.3) for all (F, || · ||) ∈ F(ΔtFE) under the time-step restriction

βi,j

αi,j
Δt ≤ ΔtFE

or, equivalently,

(3.4) Δt ≤ min
i,j

αi,j

βi,j
ΔtFE = ĉ(α,β),

where the minimum is taken over all i, j such that βi,j �= 0.
The strategy of rewriting a method as a convex combination of forward Euler steps

is analogous to our approach in the case of linear systems (cf. Remark 2). In that case

1Note that stage yi here corresponds to stage yi+1 in the Butcher representation, which accounts
for the shifted subscript of the abscissa.
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we arrived at the same criteria by considering absolute monotonicity of the sta-
bility function. In [19], by considering absolute monotonicity of the matrix-valued
K-function, and algebraic criterion for contractivity preservation was derived. This
criterion involves the radius of absolute monotonicity of the Runge–Kutta method
R(K), also introduced originally by Kraaijevanger [19]. A more convenient, equiva-
lent definition of R(K) was given in [3, 11], and we repeat it here.

Definition 3.2 (radius of absolute monotonicity (of a Runge–Kutta method)).
The radius of absolute monotonicity R(K) of the Runge–Kutta method defined by
Butcher array K is the largest value of r such that (I + rA)−1 exists and

K(I + rA)−1 ≥ 0,

rK(I + rA)−1es ≤ es+1.(3.5)

Here the inequalities are componentwise, and es denotes the s× 1 vector of ones.
The following result follows from Propositions 2.1, 2.2, and 2.7 of [13].
Theorem 2. Consider an explicit Runge–Kutta method with Butcher array K

and a Shu–Osher representation α,β. Let ĉ(α,β) be defined by (3.4), let R(K) < ∞
denote the radius of absolute monotonicity defined by (3.5), and let c denote the SSP
coefficient of Definition 3.1. Then ĉ(α,β) ≤ R(K) = c. Furthermore, there exists a
Shu–Osher representation α,β such that ĉ(α,β) = R(K). In other words, the method
produces a monotonic solution for all (F, || · ||) ∈ F(ΔtFE) under the (maximal) time-
step restriction

(3.6) Δt ≤ R(K)ΔtFE.

Remark 4. As in the linear case, this time-step restriction is sharp when the entire
class F(ΔtFE) is considered. However, by considering specific F, || · ||, and u(0), it
may be possible to derive a larger time-step restriction that preserves monotonicity.
For instance, when F is a nonautonomous linear function and || · || is a norm, one may
consider the induced matrix norm of the matrix-valued K-function of the method (see
section 5.2 below).

3.2. A new class of low-storage Runge–Kutta methods. Efforts to find
SSP methods have focused on finding the method with the maximal SSP coefficient for
a prescribed order, number of stages, and (sometimes) number of memory registers.
However, the number of stages is important only as it affects the computational
efficiency and memory requirements of the method. We therefore focus on methods
that are optimal over all stages in terms of efficiency and memory. We will see that
in some cases the optimal method is obtained as the limit of a family of methods,
parameterized by stage number.

A naive implementation of an s-stage Runge–Kutta method requires s+1 memory
registers. However, if certain algebraic relations between the coefficients are satisfied,
the method may be implemented with fewer registers. Two such types of relations
have been exploited in the literature [33, 15]. The resulting two types of low-storage
methods make different important assumptions on the manner in which F is evaluated.

Consider two storage registers q1 and q2, each of size N , where N denotes the
number of ODEs to be integrated. The low-storage methods of Williamson [33] assume
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that it is possible to make assignments of the form

q1 := q1 + F(q2),

without allocating (much) additional storage for the evaluation of F(q2). As noted in
[15], this requires that the evaluation be done in “piecemeal fashion.” This is natural,
for instance, if F corresponds to a spatial discretization of a PDE where the spatial
stencil is localized, which is usually the case for semidiscretizations of hyperbolic
PDEs.

The low-storage methods of van der Houwen type [15] make instead the assump-
tion that it is possible to make assignments of the form

q1 := F(q1),

again without significant additional storage. This is apparently reasonable for com-
pressible Navier–Stokes calculations and also when F corresponds to a spatial dis-
cretization of a PDE where the spatial stencil is localized.

In the present work we give a new class of low-storage methods; the low-storage
methods presented here require the assumption that it is possible to make assignments
of the form

q1 := q1 + F(q1)

without employing a third storage register. This assumption implies the assumptions
necessary for implementation of Williamson and van der Houwen methods; hence,
the class of semidiscretizations to which it is applicable is smaller. However, it is
still reasonable for spatial discretizations with local stencils. While it requires care-
ful programming, especially for problems in two or three dimensions, when memory
considerations are important this may be worth the effort.

In the following, a method requiring m storage registers of length N is referred to
as an mN method. Sometimes it is necessary to retain the value of the solution at the
previous time step, usually in order to restart the step if some accuracy or stability
requirement is violated. While most low-storage methods will require an additional
register in this case, some will not. Such methods are denoted by mN*.

3.3. Optimal methods for nonlinear systems. Extensive efforts have been
made to find optimal explicit SSP Runge–Kutta methods by both analysis and nu-
merical search [19, 8, 9, 29, 30, 25]. Except for [19], all of these efforts formulated
the optimization problem by using the Shu–Osher form. While this allows the in-
equality constraints to be written as linear constraints, it leads to a large number of
decision variables. It has been pointed out in [5] that, by using the conditions for
absolute monotonicity, the problem can be formulated in terms of the Butcher array
only, reducing the number of variables by half. We have applied both analytical and
numerical methods to this latter formulation.

The optimization problem is formulated as

maximize r subject to

Kij = 0 (j ≥ i),(3.7a)

τk(K) = 0 (k ≤ p),(3.7b)

K(I + rA)−1 ≥ 0,(3.7c)

rK(I + rA)−1es ≤ es+1,(3.7d)

where τk represents the set of order conditions for order k (for an enumeration of
these conditions, see, e.g., Appendix B of [15]).
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Note that c ≤ clin by definition, so the values of Rs,p(φ) in Table 2.1 are upper
bounds on the value of c for methods with a given order p and number of stages s.
We will see that, in many cases, this bound can be achieved. Surprisingly, it is even
possible to find methods that achieve this bound and that can be implemented in
low-storage form.

Since clin ≤ s, it follows that ceff ≤ 1 (in fact, ceff < 1 for methods of greater than
first order). Also, any method that uses only a single memory register must consist
simply of repeated forward Euler steps and therefore cannot be more than first order
accurate. Thus an ideal higher-order method would have m = 2 and ceff as close as
possible to 1.

The first order accurate forward Euler method has ceff = 1 and can be imple-
mented in 1N* fashion; hence consideration of first order SSP methods with more
stages is superfluous. Since explicit SSP Runge–Kutta methods have order at most
four [24], it remains to consider methods of order two through four.

3.3.1. Second order methods.

2N* methods. Optimal second order methods with ceff arbitrarily close to 1
were found in [19] and later independently in [29]. The s-stage method in this family
has SSP coefficient s − 1; hence, ceff = s−1

s . The nonzero entries of the low-storage
form for the s-stage method are

βi,i−1 =

{
1

s−1 1 ≤ i ≤ s− 1,
1
s i = s,

(3.8a)

αi,i−1 =

{
1 1 ≤ i ≤ s− 1,
s−1
s i = s,

(3.8b)

αs,0 =
1

s
.(3.8c)

The abscissas are

(3.9) ci =
i− 1

s− 1
(1 ≤ i ≤ s).

Note that these methods do not require a third register even if the previous time
step must be retained. As far as we know, no low-storage implementations of this
type have been proposed before, for any Runge–Kutta method. Because the storage
costs do not increase with s while the effective SSP coefficient does, there seems to
be little drawback to using these methods with large values of s. However, we are not
aware of any implementation of these methods for s > 4. This may be because the
low-storage property of these methods has not been pointed out previously, probably
because they cannot be written in Williamson or van der Houwen form, for s > 2. In
fact, in the same paper that announced the family (3.8), other “optimal” low-storage
methods of order two (with smaller SSP coefficients) were also given [29].

Since second order discretizations are often considered to be the most efficient
for compressible flow problems involving shocks (the same problems that originally
motivated development of SSP methods), these methods should prove to be very
useful. Note that the large s members of this family are approximately twice as
efficient as the two-stage method, which is the most commonly used.

Here and below, low-storage implementations are given in Matlab code; if im-
plemented exactly in this form in Matlab, an additional memory register will be
used for temporary storage during evaluation of F . These descriptions are intended
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q1 = u; q2=u;

for i=1:s-1

q1 = q1 + dt*F(q1)/(s-1);

end

q1 = ( (s-1)*q1 + q2 + dt*F(q1) )/s;

u=q1;

Pseudocode 1: Low-storage implementation of the optimal second order methods.

to serve as pseudocode for a truly efficient implementation. The storage registers in
the pseudocode are denoted by q1 and q2. A low-storage implementation of (3.8) is
given in Pseudocode 1.

3.3.2. Third order methods.

2N* methods. The three- and four-stage third order SSP Runge–Kutta meth-
ods, originally reported in [27] and [19], respectively, can be implemented with just
two memory registers, even if the previous time step must be retained. This is possi-
ble because, like the second order methods above, the only nonzero coefficients in the
Shu–Osher arrays of these methods are in the first column of α and the first subdiag-
onal of α and β. Since the four-stage method is 50% more efficient and requires the
same amount of memory, it seems always preferable to the three-stage method. By
allowing more than four stages, we found methods of this type with larger SSP coef-
ficient; however, the number of stages required resulted in every case in an effective
SSP coefficient smaller than that of the four-stage method (ceff = 1/2).

2N methods. We now consider methods that can be implemented with only two
registers if the solution at the previous time step can be discarded. Of course, the
previous time step can be retained at the cost of using one more register.

Low-storage third order methods were found in [22]; the best 2N method has
ceff = 0.297; the best 3N method has ceff = 0.513.

We have found third order 2N methods with c = Rs,3(φ) and up to m = 10 stages.
The most efficient of these has ceff = 0.68. However, these methods are superseded
already by the following family of methods, which achieve ceff ≈ 1.

Theorem 3. Let n > 2 be an integer, and let s = n2. Then there exists a
third order s-stage method with SSP coefficient c = Rs,3(φ) = n2 − n. The nonzero
coefficients of the method are

αi,i−1 =

{
n−1
2n−1 i = n(n+1)

2 ,

1 otherwise,
(3.10a)

αn(n+1)
2 , (n−1)(n−2)

2
=

n

2n− 1
,(3.10b)

βi,i−1 =
αi,i−1

n2 − n
.(3.10c)

The abscissas of the method are

ci =
i− 1

n2 − n
for 1 ≤ i ≤ (n + 2)(n− 1)/2,(3.11a)

ci =
i− n− 1

n2 − n
for (n + 2)(n + 1)/2 ≤ i ≤ n2.(3.11b)

Furthermore, no third order s-stage method exists with a larger SSP coefficient.
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n=sqrt(s); r=s-n; q1=u;

for i=1:(n-1)*(n-2)/2

q1 = q1 + dt*F(q1)/r;

end

q2=q1;

for i=(n-1)*(n-2)/2+1:n*(n+1)/2-1

q1 = q1 + dt*F(q1)/r;

end

q1 = ( n*q2 + (n-1)*(q1 + dt*F(q1)/r) ) / (2*n-1);

for i=n*(n+1)/2+1:s

q1 = q1 + dt*F(q1)/r;

end

u=q1;

Pseudocode 2: Low-storage implementation of the optimal third order methods.

The proof of the theorem is straightforward. The SSP coefficient can be found
by using (3.4) and Theorem 2, while the satisfaction of the order conditions can be
verified by forming the Butcher array and checking directly. The optimality follows
from c ≤ Rs,p(φ) and the fact that Rn2,3 = n2 − n [18].

Like the second order family (3.8) above, this family of methods achieves effec-
tive SSP coefficients arbitrarily close to one while using only two memory registers.
Also, like the family (3.8), and unlike most known optimal third order SSP methods,
the coefficients are simple rational numbers. Note that the four-stage 2N* method
discussed above is the first member of this family. A low-storage implementation of
(3.10) is given in Pseudocode 2.

Remark 5. The family (3.10) was not found by numerical search; we have discov-
ered that, for each value of s ≤ 15, there exists at least a one-parameter family of third
order methods with c = Rs,3(φ); hence the particular methods (3.10) are unlikely to
be found by numerical search (much less the low-storage implementations). We were
led to these methods by the discovery of the remarkable ten-stage method of order
four, discussed in the next section.

3.3.3. Fourth order methods. No explicit fourth order method with four
stages has c > 0 [19, 8]. The optimal five stage method was found in [19] and again
independently in [29]; this method has ceff = 0.302. More efficient methods with up
to eight stages were found in [30, 22, 21]; the most efficient (eight-stage) method has
ceff = 0.518 and can be implemented in 3N fashion.

Low-storage fourth order SSP methods were found in [22]; no 2N methods are
reported, and the best 3N method has ceff = 0.106. Even by allowing downwinding,
the best 3N method reported there has ceff = 0.187. Therefore these are inferior to
the eight-stage method mentioned above.

Our search recovered the same optimal methods for up to eight stages. However,
these methods are superseded in terms of both efficiency and storage by the optimal
ten-stage method below.

2N methods. No 2N fourth order SSP methods were previously known. By
numerical search, we found a ten-stage fourth order method implementable with two
registers and with an effective SSP coefficient greater than any previously known
fourth order full-storage method. Additionally, this is the only fourth order SSP
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q1 = u; q2=u;

for i=1:5

q1 = q1 + dt*F(q1)/6;

end

q2 = 1/25*q2 + 9/25*q1;

q1 = 15*q2-5*q1;

for i=6:9

q1 = q1 + dt*F(q1)/6;

end

q1 = q2 + 3/5*q1 + 1/10*dt*F(q1);

u=q1;

Pseudocode 3: Low-storage implementation of the ten-stage fourth order method.

method to be analytically proved optimal, because it achieves the optimal bound on
ten-stage, fourth order SSP methods for linear problems: c = R10,4(φ) = 6. Finally,
the method has simple rational coefficients. The nonzero coefficients are

βi,i−1 =

⎧⎪⎨
⎪⎩

1
6 i ∈ {1 . . . 4, 6 . . . 9},
1
15 i = 5,
1
10 i = 10,

β10,4 =
3

50
,

αi,i−1 =

⎧⎪⎨
⎪⎩

1 i ∈ {1 . . . 4, 6 . . . 9},
2
5 i = 5,
3
5 i = 10,

α5,0 =
3

5
,

α10,0 =
1

25
,

α10,4 =
9

25
.

The abscissas are

(3.12) c =
1

6
· (0, 1, 2, 3, 4, 2, 3, 4, 5, 6)

T
.

Remark 6. This method bears a remarkable similarity to the nine-stage third
order method of the previous section; this is not altogether surprising because both
of these methods achieve the linear stability limit and the optimal s+ 1-stage, fourth
order linear SSP Runge–Kutta method is closely related to the optimal s-stage, third
order linear SSP Runge–Kutta method [18]. Based on this, one is led to hope for a
family of fourth order methods similar to the third order family above—i.e., a family
with n2 + 1 stages and SSP coefficient n2 − n. However, for the case n = 2, no such
method exists [22]. Furthermore, after extensive analytical and numerical searches,
we have been unable to find a method of this type for n = 4.

A 2N implementation of the ten-stage method is given in Pseudocode 3.
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Table 3.1

Properties of some popular and optimal SSP Runge–Kutta methods. Methods and properties
in bold indicate new contributions in the present work. An asterisk indicates that the previous time
step can be retained without increasing the required number of registers.

Popular method ceff Storage Improved method ceff Storage

SSPRK(2,2) 0.500 2N* SSPRK(s,2) 1 − 1/s 2N*
SSPRK(3,3) 0.333 2N* SSPRK(4,3) 0.500 2N*

SSPRK(n2,3) 1 − 1/n 2N
SSPRK(5,4) 0.377 3N SSPRK(10,4) 0.600 2N

SSPRK(26,4) 0.696 3N

3N methods. We have found many 3N methods with more than ten stages that
are more efficient than the 2N ten-stage method above. It appears likely that with
three registers it is possible to obtain fourth order methods with ceff arbitrarily close
to unity. However, the value of ceff increases very slowly with the stage number,
and the optimization problem becomes increasingly difficult. We do not discuss these
methods further here, except to say that the most efficient found so far has 26 stages
and ceff ≈ 0.696.

The results of this section are summarized in Table 3.1, which lists the effective
SSP coefficient and storage requirements for some well-known SSP methods and for
improved methods with extra stages.

4. Linear stability and truncation error analysis.

4.1. Linear stability analysis. As discussed in section 2, when a Runge–Kutta
method is applied to a linear autonomous system of ODEs (2.3), it reduces to the
iteration (2.4), characterized by the stability function φ. For the case of a single
linear ODE, this is simply un+1 = φ(λΔt)un. The method is said to be absolutely
stable for values of z such that |φ(z)| < 1. For the optimal second order SSP family
(3.8),

(4.1) φ(z) =
1

s
+

s− 1

s

(
1 +

z

s− 1

)s−1

.

These are, of course, the same optimal polynomials found in section 2 for the s-stage
second order cases. For the optimal third order SSP methods (3.10),

(4.2) φ(z) =

(
n

2n− 1

(
1 +

z

n2 − n

)(n−1)2

+
n− 1

2n− 1

(
1 +

z

n2 − n

)n2)
,

where again n =
√
s.

In Figure 4.1, we plot the corresponding absolute stability regions for some of
these methods and some of the optimal fourth order methods. The plots have been
rescaled by dividing hλ by the number of stages s, in order to give a fair comparison
of relative computational efficiency. Note that, despite the increase in stage number,
the SSP methods generally have larger scaled stability regions.

It is interesting to note that for large s the stability functions of the optimal
second order methods approach that corresponding to s applications of the forward
Euler method. The scaled absolute stability regions of the second order methods
therefore tend to that of the forward Euler method.

The stability function may be thought of as modeling the amplification of errors
in the initial stage. For Runge–Kutta methods with many stages, it is important also
to consider amplification of roundoff errors occurring in the intermediate stages.
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Fig. 4.1. Scaled stability regions of some members of the families of optimal second, third, and
fourth order methods.
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Consider a Shu–Osher implementation of a Runge–Kutta method including
roundoff errors ri at each stage:

ỹ0 = un + r0,

ỹi =

i−1∑
j=0

(αi,j ỹk + Δtβi,jL(ỹk)) + ri, αi,j ≥ 0, i = 1, . . . , s,(4.3)

ũn+1 = ỹs.

By subtracting the exact method (3.3) from the perturbed method (4.3), one finds
that

(4.4) ũn+1 − un+1 = φ(ΔtL)r0 +

s∑
j=1

θj(ΔtL)rj .

Here φ is again the absolute stability function; the functions θj are referred to as
internal stability polynomials [31]. Assuming the rj ’s have magnitude on the order
of roundoff (εmachine), the method will be internally stable as long as ||φ(ΔtL)|| <<
1/εmachine in the appropriate region of the complex plane. It is important to note that,
in contrast to the stability function of a method, the internal stability polynomials
depend on the particular manner in which the method is implemented.

4.1.1. Second order methods. Straightforward calculation reveals that, for
the optimal family of second order methods (3.8), as implemented above,

(4.5) θj(z) =

(
s− 1

s
+

z

s

)(
1 +

z

s− 1

)s−1−j

for 1 ≤ j ≤ s−1, while θs(z) = 1. It can be shown that the region for which |θj(z)| < 1
contains the absolute stability region of the method, so that, for any linearly stable
calculation, internal stability is never a concern for these methods.

4.1.2. Third order methods. Similarly, for the optimal family of third order
methods (3.10), as implemented above, the highest degree internal stability polyno-
mials are given by

θj(z) =
1

2n− 1

[
n

(
1 +

z

n2 − n

)(n−1)2

+ (n− 1)

(
1 +

z

n2 − n

)n2−j
]

(4.6)

for 1 ≤ j ≤ (n−1)(n−2)
2 . Again, it can be shown that the region for which |θj(z)| < 1

contains the absolute stability region of the method, so that, for any linearly stable
calculation, internal stability is never a concern for these methods.

Similar analysis shows that the new ten-stage fourth order method with the low-
storage implementation presented here is internally stable. We omit the details here.

4.2. Truncation error analysis. By considering the Taylor series of the true
solution and comparing the terms appearing in a Runge–Kutta method, bounds on
the relative size of the leading terms of the local truncation error can be found. Similar
to the derivation of order conditions, this analysis is simplified by using the theory
of rooted trees. By assuming that F is sufficiently smooth and assuming bounds on
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Table 4.1

Error constants of new optimal SSP Runge–Kutta methods compared to previously known meth-
ods. RK(4,4) is the classical fourth order Runge–Kutta method.

Method CL C

SSP(2,2) 1
6

1
4

SSP(s,2) 1
6(s−1)

1
4(s−1)

SSP(3,3) 1
24

1
8

SSP(n2,3) ((n−2)!)2

12(n!)2
(n2−n+1)((n−2)!)2

12(n!)2

RK(4,4) 24
2880

101
2880

SSP(10,4) 1
18

· 24
2880

17
101

· 101
2880

F and its derivatives, the leading truncation error can be bounded by a constant
proportional to ([1, p. 152])

C =
∑

r(t)=p+1

1

σ(t)

∣∣∣∣Φ(t) − 1

γ(t)

∣∣∣∣ .
Here the sum is over all rooted trees of order p+1, Φ(t) are the elementary differentials,
and γ(t) and σ(t) are the density and the symmetry of the tree t, respectively. The
reader is referred to [1] for further details. In the case of a linear autonomous ODE,
only tall trees are important, so the above reduces to

CL =
1

σ(T )

∣∣∣∣Φ(T ) − 1

γ(T )

∣∣∣∣ ,
where T is the tall tree of order p + 1.

It is straightforward to calculate the values of C and CL for our optimal methods.
The resulting error constants are given in Table 4.1; the error constants of some
previously known methods are provided for comparison. Note that the error constants
of the new methods are smaller in all cases and decrease as the stage number increases.
Thus, for a given time step, the new methods are more accurate. If we compare the
accuracy while holding the amount of computational work constant, we find that the
size of the error increases very slowly with the number of stages. For instance, for
linear problems SSP(10,4) gives an error about twice as large as RK(4,4) if the amount
of work is held constant. In general, if we wish to compare two methods of order p,
let ηi, si, and Ci denote the relative error, number of stages, and error constant,
respectively, of method i. Then

η2

η1
≈

(
s2

s1

)p
C1

C2
.

5. Numerical tests. In this section we demonstrate the effect of the SSP prop-
erties of our optimal methods by numerical examples.

5.1. Constant coefficient advection. We consider the linear system of ODEs

(5.1) u′ = Lu,
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with u ∈ RN , L ∈ RN×N , and

(5.2) L =
1

N

⎛
⎜⎜⎜⎜⎝

−1

1 −1
. . .

. . .

1 −1

⎞
⎟⎟⎟⎟⎠

arising from an upwind-differencing approximation of the PDE

(5.3) ut + ux = 0

on the interval x = [0, 1] with boundary condition u(0, t) = 0. We take N = 20.
For this linear autonomous system, any Runge–Kutta method reduces to the simple
iteration (2.4). Clearly monotonicity will be preserved for arbitrary initial conditions
iff

(5.4) ||φ(ΔtL)|| ≤ 1

(cf. Remark 1). For this problem we have monotonicity for the forward Euler method
under the maximal time step ΔtFE ≤ Δx = 1

N . In order to compare different inte-
gration methods, we compute for each method the maximum value c0 such that (5.4)
holds with

(5.5) Δt = c0ΔtFE.

It can be shown analytically (cf. Remark 3 and [28, section 4.2]) that c0 is exactly
equal to the linear SSP coefficient clin. In Table 5.1, we list values of c0, clin, and
clineff = clin/s for various methods. Here we have included the non-SSP methods of
Wang and Spiteri [32] (note that they are SSP for linear autonomous problems). In

Table 5.1

Monotone time-step coefficients and effective time-step coefficients for some optimal fourth
order methods. RK44 is the classical fourth order method. NSSP (non-SSP) methods are from [32].

Method c0 = clin clineff

NSSP(2,1) 0.67 0.33

NSSP(3,2) 1 0.33

SSP(2,2) 1 0.50

SSP(10,2) 9 0.90

NSSP(3,3) 1 0.33

NSSP(5,3) 1.4 0.28

SSP(3,3) 1 0.33

SSP(4,3) 2 0.50

SSP(9,3) 6 0.67

SSP(25,3) 20 0.80

RK(4,4) 1 0.25

SSP(5,4) 1.86 0.37

SSP(10,4) 6 0.60
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every case the theory and experiment are in perfect agreement. A clear advantage in
efficiency is conferred by the SSP methods with many stages.

5.2. Variable coefficient advection. Previous work on SSP methods has em-
phasized that the SSP property is most critical when solving semidiscretizations of
nonlinear PDEs with discontinuous solutions. The following example shows that SSP
methods are relevant also for linear nonautonomous problems with smooth solutions
but rapidly varying coefficients. A similar test problem was used in [19].

We solve the IBVP

ut + (a(x, t)u)x = 0,(5.6a)

u(0, t) = 0, u(x, 0) = g(x),(5.6b)

on the interval x ∈ [0, 1], with

(5.7) a(x, t) = cos2(20x + 45t).

We semidiscretize by using upwind differencing and N = 20 points.
This rapidly oscillating velocity field is designed to demonstrate the effect of the

SSP property; it might be considered as a simple model of an underresolved turbulent
flow. The low-storage property of our methods makes them appealing choices for
direct numerical simulation of turbulent flows.

The exact solution to (5.6) is monotonic in the L1 norm and is nonnegative for all
time if g(x) ≥ 0. For a given integration method, we are interested in the maximum
time step such that these properties hold discretely to within roundoff error (≈ 10−15).
For the forward Euler method, this maximum time step is found to be Δt = 1.02Δx.

Because this semidiscretization is linear, any Runge–Kutta method applied to it
reduces to the iteration

(5.8) un+1 = MΔt(t)u
n,

where MΔt(t) is the matrix-valued K-function of the method [19]. Thus monotonicity
and positivity are equivalent to

||MΔt||1 ≤ 1 and(5.9)

MΔt ≥ 0,

respectively (the second inequality is componentwise).
In Figures 5.1–5.2, we plot the theoretical monotone and positive scaled time step

Δt/(sΔx) (i.e., the effective SSP coefficient) versus the observed maximum scaled
monotone and positive time step for the second and third order families, respectively,
of optimal methods. In all cases, the theory is borne out by these results; further-
more, the theoretical time-step limit seems to be quite sharp for this problem. For
comparison, we also plot the observed maximum monotone and positive time step for
the most commonly used second and third order SSP methods.

In Table 5.2 we list, for various methods, the maximum observed monotone and
positive time step for this problem, along with effective SSP coefficients for linear and
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Fig. 5.1. Theoretical and actual monotone effective time steps for the family of optimal second
order methods. The horizontal line shows the actual monotone effective time step of the popular
SSP22 method for comparison.
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Fig. 5.2. Theoretical and actual monotone effective time steps for the family of optimal third
order methods. The horizontal line shows the actual monotone effective time step of the popular
SSP33 method for comparison.

nonlinear problems. Again we see fairly good agreement with theory and a clear
advantage conferred by the SSP methods with many stages.

Remark 7. As expected, nearly all of the non-SSP methods fail to produce
monotone results even for very small relative time steps (< 0.1) for this problem. On
the other hand, the classical fourth order method performs reasonably well despite
being non-SSP for nonautonomous/nonlinear problems. This demonstrates that SSP
time-step restrictions are not always sharp for a particular choice of ODEs and time
integrator (cf. Remarks 1 and 4).
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Table 5.2

Theoretical and observed monotone effective time steps for variable coefficient advection. RK44
is the classical fourth order method.

Method ceff Monotone effective time step

NSSP(2,1) 0 0.033

NSSP(3,2) 0 0.037

NSSP(3,3) 0 0.004

NSSP(5,3) 0 0.017

RK(4,4) 0 0.287

SSP(5,4) 0.302 0.416

SSP(10,4) 0.600 0.602

6. Conclusions and future work. We have presented an efficient algorithm for
computing optimal strong stability-preserving Runge–Kutta methods for application
to linear autonomous ODEs. This enables optimization of such methods with more
stages and higher order accuracy than previously possible.

We have presented second, third, and fourth order explicit SSP Runge–Kutta
methods for nonlinear or nonautonomous ODEs that achieve theoretically optimal
bounds in terms of both the stable time step and memory requirements. These are
more efficient than all existing explicit methods (including existing full-storage meth-
ods and methods using downwinding). Apparently the only remaining open question
in this area is the existence of even more efficient fourth order methods (with even
more stages).

It will be important to investigate the practical efficiency of these methods ver-
sus traditional methods for particular PDEs and semidiscretizations of interest. Some
previous studies using SSP Runge–Kutta methods with a few extra stages have demon-
strated their usefulness [17, 20].

The low-storage methods presented here do not fit into either of the established
families of low-storage Runge–Kutta methods; consideration of these new low-storage
methods leads naturally to a more general theory of low-storage implementations,
not just for SSP methods but for general Runge–Kutta methods. This theory is the
subject of current research.
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